

ABN 64 002 841 063

PROPOSED REDEVELOPMENT

LOT 1 IN DP818683 15 CLOSE STREET CANTERBURY

STAGE 1 PRELIMINARY CONTAMINATION ASSESSMENT & STAGE 2 DETAILED CONTAMINATION ASSESSMENT

REPORT NO 13138/1-AA 24 APRIL 2014

Lemko Place, Penrith NSW 2750 Telephone (02) 4722 2700 e-mail: info@geotech.com.au PO Box 880, Penrith NSW 2751 Facsimile (02) 4722 2777 www.geotech.com.au

ABN 64 002 841 063

Job No: 13138/1 Our Ref: 13138/1-AA 24 April 2014

Canterbury City Council c/- JBA Urban Planning Consultants Pty Ltd P O Box 375 NORTH SYDNEY NSW 2059 Email: <u>SBallango@jbaurban.com.au</u>

Attention: Ms S Ballango

Dear Madam

re Proposed Redevelopment Lot 1 in DP818683 - 15 Close Street, Canterbury Stage1 Preliminary Contamination Assessment & Stage 2 Detailed Contamination Assessment

Please find herewith the Stage 1 preliminary contamination assessment (PCA) and Stage 2 Detailed Contamination Assessment (DCA) report for the above site. It is understood that the site is proposed for redevelopment into commercial and residential high-rise buildings, including a multi-purpose community art cultural facility.

The objectives of the assessments were to ascertain if the site presents a risk of harm to human health and / or the environment and to determine the suitability of the site for the proposed redevelopment.

The scope of work included a desktop study of site history, geological and hydrogeological information, a site inspection, soil sampling and laboratory testing.

Reference should be made to Sections 15.0 and 16.0 of the report for the conclusion and limitations.

If you have any questions, please do not hesitate to contact the undersigned.

Yours faithfully GEOTECHNIQUE PTY LTD

JOHN XU Associate BE, MEngSc, MIEAust

ABN 64 002 841 063

EXECUTIVE SUMMARY

Geotechnique Pty Ltd (Geotechnique) was commissioned by Canterbury City Council through JBA Urban Planning Consultants Pty Ltd to conduct a Stage 1 preliminary contamination assessment (PCA) and Stage 2 Detailed Contamination Assessment (DCA) for the site comprising the entirety of Lot 1 in DP818683, located at 15 Close Street, Canterbury, as shown on Figure 1, page 1 of the report.

The objectives of the assessment were to ascertain if the site presents a risk of harm to human health and / or the environment and to determine the suitability of the site for the proposed redevelopment. In order to achieve the objectives of the assessment the scope of work included a desktop study of site history, geological and hydrogeological information, a site inspection, soil sampling and laboratory testing.

The data quality objectives outlined in this report have been satisfied. The findings of this Stage 1 PCA and Stage 2 DCA are summarised as follows;

- The site is occupied by a club house, three bowling greens and a car park. The site was used for bowling activities. The site also contains fill materials.
- The site is proposed for redevelopment into commercial and residential high-rise buildings, including a multi-purpose community art cultural facility. However, details of the proposed development are unknown at this stage.
- The site is generally underlain by fill with thickness ranging from about 0.15 metre (m) to 3.3m, overlying relatively impermeable residual sandy clay.
- As presented in the summary tables and discussed in Section 14.0, most of the laboratory test results satisfied the criteria for stating that the analytes selected are either not present (i.e. concentrations less than laboratory limits of reporting), or present in the sampled soil at concentrations that do not pose a risk of hazard to human health or the environment for residential with minimal soil access. Asbestos containing material was not encountered and asbestos was not detected in the soil samples analysed.

The surface soils and the deeper soils generally do not appear to have been impacted by past activities and the presence of fill, with the exception of locations of concern BH5, BH16, BH17 and BH21, as indicated and tabulated on Drawing No 13138/1-AA2. The elevated concentrations of Zn or BaP in soil around these locations potentially pose a risk to terrestrial ecosystems if not placed beneath a building / structure / road for the proposed redevelopment.

In addition, field work for this assessment revealed inclusion of ash material in the fill (sandy gravel) at locations BH3, BH4, BH6, BH7, BH10, BH11 and BH13 to BH15 (refer to Drawing No 13138/1-AA1).

• Due to the absence of significant chemical concentrations within the soils it is our opinion that potential off-site impacts of contaminants beneath the site on groundwater and waterbodies are low.

13138/1-AA Executive summary continued

Based on this assessment it is considered that the site can be made suitable for the proposed redevelopment into commercial and residential high-rise buildings subject to implementation of the following recommendations, prior to site preparation and earthworks.

 Assessment of soils at and in the vicinity of the footprints of site features such as the club house, car park, etc., after complete demolition and removal. The purpose of this is to ascertain the presence or otherwise of "suspect" materials (identified by unusual staining, odour, discolouration or inclusions such as building rubble, asbestos, ash particles, etc.) and fill, which were not encountered during field work for this assessment.

Sampling and testing will be required to determine the contamination status of soils / fill at and in the vicinity of the footprints. In the event of contamination, detailed assessment, remediation and validation will be required.

- Depending on the layout and details of the proposed redevelopment, a further contamination assessment of topsoil or fill (gravelly sand or silty clay) around BH5, BH16, BH17 and BH21 (refer to Drawing No 13138/1-AA2), if not placed beneath a building / structure / road for the proposed redevelopment, should be carried out to assess the risk to terrestrial ecosystems and to determine the requirement for remediation / management.
- Inclusion of ash material in the fill (sandy gravel) was identified at BH3, BH4, BH6, BH7, BH10, BH11 and BH13 to BH15 (refer to Drawing No 13138/1-AA1). A further contamination assessment around those locations should be undertaken to determine the contamination status and to delineate the extent of the inclusion of ash material in the fill. Depending on the layout and details of the proposed redevelopment, aesthetic issues should be considered and addressed.

If suspect materials (identified by unusual staining, odour, discolouration or inclusions such as building rubble, asbestos sheets/pieces / pipes, ash material, etc.) are encountered during any stage of future earthworks / site preparation we recommend that this office is contacted for assessment and to take all necessary actions.

Any imported fill should be tested or appropriate validation certification provided by a qualified consultant, to ensure suitability for the proposed use. The imported fill must be free from asbestos, ash and odour, not be discoloured and acid sulphate soil. Environmentally, virgin excavated natural material (VENM) or excavated natural material (ENM) will be suitable for use as fill for the site. Salinity assessment might be required.

For any materials to be excavated and removed from the site it is recommended that waste classification of the materials, in accordance with the "Waste Classification Guidelines Part 1: Classifying Waste" Department of Environment, Climate Change and Water (DECCW), 2009 and NSW EPA guidelines for the resource recovery exemptions under the Protection of the Environment Operations (Waste) Regulation 2005, is undertaken prior to disposal at an appropriately licensed landfill or potential re-use at other sites.

Reference should be made to Section 16.0 of the report, which set out details of the limitations of the assessments.

GEOTECHNIQUE PTY LTD

TABLE OF CONTENTS

			Page
1.0	IN	I RODUCTION	1
2.0	S	COPE OF WORK	2
3.0	SI	TE IDENTIFICATION AND PROPOSED DEVELOPMENT	2
4.0	SI	TE HISTORY	3
4	.1	Aerial Photographs	3
4	.2	NSW DOL Records	4
4	.3	Section 149 (2& 5) Planning Certificate and Council Records	4
4	.4	NSW OEH Records	5
4	.5	WorkCover NSW Records	5
5.0	SI	TE CONDITION AND SURROUNDING ENVIRONMENT	6
5	.1	Site Condition	6
5	.2	Surrounding Environment	6
6.0	т	DPOGRAPHY, GEOLOGY& HYDROGEOLOGY	6
7.0	C	ONCEPTUAL SITE MODEL	8
7	.1	Potential Areas of Environmental Concern	8
7	.2	Potentially Contaminated Media	9
7	.3	Potential for Migration	9
8.0	D	ATA QUALITY OBJECTIVES	10
9.0	SA	AMPLING & ANALYSIS PLAN AND SAMPLING METHODOLOGY	14
10.0	F	ELD QUALITY ASSURANCE AND QUALITY CONTROL	16
1	0.1	Sampling Personnel	16
1	0.2	Field Instrument Calibration	17
1	0.3	Decontamination Procedures	17
1	0.4	Rinsate Sample	17
1	0.5	Trip Spike Sample	17
1	0.6	Duplicate Samples	18
1	0.7	Inter-laboratory Duplicate (Split) Samples	19
11.0	L	ABORATORY QUALITY ASSESSMENT AND QUALITY CONTROL	20
1	1.1	Laboratory Accreditation	20
1	1.2	Sample Holding Times	20
1	1.3	Test Methods and Limits of Reporting / Practical Quantitation Limits	21
1	1.4	Method Blanks	21
1	1.5	Laboratory Duplicate Samples	22
1	1.6	Laboratory Control Samples	22
1	1.7	Matrix Spike	23

13138/1-AA
Table of contents continued

11	.8 Surro	ogate Spikes	23
12.0	QA/QC	DATA EVALUATION	24
13.0	ASSES	SMENT CRITERIA	26
14.0	FIELD	& LABORATORY TEST RESULTS, ASSESSMENT & DISCUSSION	27
14	I.1 Field	Results	27
14	1.2 Analy	/tical Results	27
	14.2.1	Metals (As, Cd, Cr, Cu, Pb, Hg, Ni & Zn), pH, CEC & TOC	
	14.2.2	TPH & BTEX	
	14.2.3	Polycyclic Aromatic Hydrocarbons (PAH)	
	14.2.4	Organochlorine Pesticides (OCP)	
	14.2.5	Polychlorinated Biphenyls (PCB)	29
	14.2.6	Cyanides	29
	14.2.7	Phenols	29
	14.2.8	Organophosphorus Pesticides (OPP)	29
	14.2.9	Asbestos	
15.0	CONCL	LUSION AND RECOMMENDATIONS	29
16.0	LIMITA	TIONS	31

LIST OF REFERENCES

Drawing No 13138/1-AA1	Borehole Locations
Drawing No 13138/1-AA2	Locations of Concern

TABLES

Schedule of Laboratory Testing
Rinsate Sample
Trip Spike Sample
Duplicate Sample
Duplicate Sample
Split Sample
Split Sample
Metals, Cation Exchange Capacity (CEC), pH,& Total Organic Carbon (TOC)
Test Results – Discrete Samples
Metals, Cation Exchange Capacity (CEC), pH, & Total Organic Carbon (TOC)
Test Results – Discrete Samples
Metals, Cation Exchange Capacity (CEC), pH, & Total Organic Carbon (TOC)
Test Results – Composited Samples
Metals, Cation Exchange Capacity (CEC), pH, & Total Organic Carbon (TOC)
Test Results – Composited Samples

Table G3	Metals, Cation Exchange Capacity (CEC), pH, & Total Organic Carbon (TOC)
	Test Results – Composited Samples
Table G4	Metals, Cation Exchange Capacity (CEC), pH, & Total Organic Carbon (TOC)
	Test Results – Composited Samples
Table G5	Metals, Cation Exchange Capacity (CEC), pH, & Total Organic Carbon (TOC)
	Test Results – Composited Samples
Table H1	Cadmium Test Results – Sub-Samples
Table H2A	Copper Test Results – Sub-Samples
Table H2B	Copper Test Results – Sub-Samples
Table H3	Mercury Test Results – Sub-Samples
Table H4	Nickel Test Results – Sub-Samples
Table H5	Zinc Test Results – Sub-Samples
Table I	Total Petroleum Hydrocarbons (TPH) AND BTEX Test Results – Discrete Samples
Table J	Polycyclic Aromatic Hydrocarbons (PAH) Test Results – Discrete Samples
Table K	Organochlorine Pesticides (OCP), Polychlorinated Biphenyls (PCB), Cyanides and Phenols Test Results – Composited Samples
Table L	Organophosphorus Pesticides (OPP) Test Results – Composited Samples
Table M	Asbestos Test Results – Discrete Samples

APPENDICES

NSW Department of Lands Records
Section 149 (2& 5) Planning Certificate
NSW Environment and Heritage (OEH) Records
WorkCover NSW Records
Table 1 – Borehole and Sample Logs
Groundwater Map and Bores Data
PID Calibration Sheet
SGS Environmental Services Analytical Reports and
Envirolab Services Certificate of Analysis
Environmental Notes

^{13138/1-}AA Table of contents continued

1.0 INTRODUCTION

This report presents the results of a Stage 1 preliminary contamination assessment (PCA) and Stage 2 detailed contamination assessment (DCA) for the site comprising the entirety of Lot 1 in DP818683, located at 15 Close Street, Canterbury, as indicated on Figure 1 below.

FIGURE 1

Map Data ©2014 Google

The objectives of the assessment were to ascertain if the site presents a risk of harm to human health and / or the environment and to determine the suitability of the site for the proposed redevelopment.

The format of this report closely follows that recommended in the NSW Environment Protection Authority (EPA), "Guidelines for Consultants Reporting on Contaminated Sites" - 2011.

2.0 SCOPE OF WORK

In order to achieve the objective of this assessment the following scope of work was conducted in accordance with our fee proposal Q6433R1 dated 14 January 2014.

- A desktop study of the following to assist in identification of potential contamination issues;
 - > Historical aerial photographs.
 - > NSW Department of Lands (DOL) records.
 - Section 149 (2& 5) Planning Certificate issued by Canterbury City Council.
 - NSW Office of Environment and Heritage (OEH) records of EPA Record of Notices for Contaminated Land.
- Review of soils and geological maps.
- Inspection by an Environmental Engineer from Geotechnique Pty Ltd (Geotechnique) to identify current site activities, site features and any visible or olfactory indicators of potential contamination.
- Soil sampling by the Environmental Engineer in accordance with a pre-determined sampling plan developed with reference to the NSW EPA Sampling Design Guidelines and aimed at ascertaining the presence or otherwise of soil contaminants.
- Screening the recovered fill samples for volatile organic compounds (VOC) using a calibrated Photo-Ionised Detector (PID).
- Chemical analysis by National Association of Testing Authorities (NATA) accredited testing laboratories, in accordance with chains of custody (COC) prepared by Geotechnique.
- Implementation of industry standard quality assurance (QA) and quality control (QC) measures.
- Assessment of the laboratory analytical results.
- Assessment of field and laboratory QA and QC.
- Assessment of the contamination status of the site.

3.0 SITE IDENTIFICATION AND PROPOSED DEVELOPMENT

The site is located on the northern side of Close Street, Canterbury, in the local government area of Canterbury, as indicated on Figure 1 (page 1). The site comprises the entirety of Lot 1 in DP818683.

As shown on Drawing No 13138/1-AA1 the site is an irregular shape, measuring about 140 metres (m) along the Close Street frontage, with a depth of about 105m along the western boundary and covering an area of 1.078 hectares (ha).

It is understood that the site is proposed for redevelopment into commercial and residential high-rise buildings, including a multi-purpose community art cultural facility. However, details of the proposed redevelopment are unknown at this stage.

3

13138/1-AA Lot 1 in DP818683 - 15 Close Street, Canterbury

4.0 SITE HISTORY

In order to formulate a picture of the site history and to assist in identification of any potential contamination Geotechnique obtained and / or reviewed information including historical aerial photographs, NSW DOL records, Planning Certificate issued by Council under Section 149 of the Environmental Planning and Assessment Act 1979, Council records, NSW OEH record of EPA Notices for Contaminated Land, as well as records of the POEO Public Register and WorkCover NSW information pertaining to storage of dangerous goods. The results of the information review are presented in the following sub-sections.

4.1 Aerial Photographs

Aerial photographs taken in 1951, 1961, 1970, 1978, 1986, 1994, 2005 and 2014 were examined. Copies of the aerial photographs are kept in the offices of Geotechnique and are available for examination upon request. The writer made the following observations. Due to scale some of the listed observations are best interpretations only.

All the aerial photographs indicate that a railway and Close Street border the site to the north and south respectively.

1951	The site is vacant with no specific usage noted. Disturbed areas were noted within the site. Buildings possibly associated with commercial / industrial activities are noted in the
	southern portion of the adjacent western and eastern properties.
1961	A building resembling the current club house is noted within the site. A car park and three areas possibly associated with bowling greens are also evident.
	A large building, possibly a warehouse, is evident in the northern portion of the adjoining western property. The remaining adjacent properties are relatively unchanged since 1951.
1970	The site and neighbouring properties are essentially unchanged since 1961.
1978	The site remains predominantly unchanged since 1970.
	The previously noted building in the southern portion of the adjacent eastern property has been demolished and removed. Large buildings possibly associated with commercial / industrial activities occupy the entire eastern property. The remaining adjacent properties are essentially unchanged.
1986 & 1994	The site and neighbouring properties are relatively unchanged since 1978.
2005	The site remains essentially unchanged since 1994.
	The previously noted large buildings in the adjacent eastern property have been demolished and removed. The adjoining eastern property is undergoing new residential development. The remaining adjacent properties have not changed significantly.
2014	The site appears essentially unchanged since 2005.
	The residential development in the adjoining eastern property has been well established. The remaining adjoining properties have not changed notably.

4

13138/1-AA Lot 1 in DP818683 - 15 Close Street, Canterbury

In summary, the aerial photographs revealed the site was vacant with no specific usage noted prior to the early 1950s and developed into commercial land possibly associated with bowling activities in the early 1960s. Disturbed areas were noted within the site in the early 1950s. It is possible that some soils were imported.

Buildings possibly associated with commercial / industrial activities were noted in the adjoining western property. The adjacent eastern property was possibly used for commercial / industrial activities until residential redevelopment in the mid 2000s.

4.2 NSW DOL Records

The list of proprietors and lessee for the site is summarised in Appendix A. NSW DOL records indicate that;

- > The Council of the Municipality of Canterbury has owned the land since 1956.
- Private proprietors owned the site prior to 1956.
- The site was leased to Canterbury Bowling Club and Sydney Petanque Club Limited between 1990 and 2010. Bowling activities probably occurred within the site based on the nature of the lessee during those periods.

4.3 Section 149 (2& 5) Planning Certificate and Council Records

The Planning Certificate (No 28890) under Section 149 Environmental Planning and Assessment Act 1979 for Lot 1 in DP818683 issued by Canterbury City Council on 19 March 2014 indicated that;

- The land is zoned RE1 Public Recreation in accordance with Canterbury Local Environmental Plan 2012.
- The SEPP No. 55 Remediation of Land applies to the land.
- Restrictions on development due to heritage are not applicable to the land.
- There is no notification that the subject property is affected by the provisions of Section 38 or 39 of the *Coastal Protection Act 1979*.
- The land is not within a mine subsidence district within the meaning of the Section 15 of the *Mine Subsidence Compensation Act, 1961.*
- The land is not affected by any road widening or road realignment under realignment under Division 2 of Part 3 of the *Roads Act 1993, or* an environmental planning instrument or any resolution of Council.
- There are no matters arising to the Contaminated Land Management Amendment Act 1997.
- On the 10 June 1999 Council adopted a policy on contaminated land. This policy will restrict development of land;
 - a) Which is affected by contamination.
 - b) Which has been used for certain purposes.
 - c) In respect of which is not sufficient about contamination.

- d) Which is proposed to be used for certain purposes.
- e) In other circumstances contained in the policy.

Reference may be made to Appendix B for a copy of the Section 149 (2 & 5) Certificate.

A request was made to Canterbury City Council under Schedule 5 of the Government Information (Public Access) Regulation 2009 for access to any relevant information pertaining to the site under the Freedom of Information Act. The request included information pertaining to development and building applications and approvals, complaints, notices issued, council inspection records, registered activities, chemical storage and waste disposal.

The following notes were made from the information provided by Council.

- Council approval (Application Reference No 35.2963) for use of premises as a place of public entertainment, granted 15 February 1993.
- Certification of Classification for a place of public entertainment dated 15 February 1993.

4.4 NSW OEH Records

The NSW OEH maintains records of EPA notices for contaminated land under the Contaminated Land Management (CLM) Act 1997 or the Environmentally Hazardous Chemical Act 1985. The notices relate to investigation and / or remediation of site contamination.

In addition the EPA might be regulating contamination at the land through a licence or notice under the Protection of the Environment Operations Act 1997 (POEO Act). Licence conditions relate to pollution prevention, monitoring, cleaner production through recycling and re-use and implementation of best practice.

A search of the OEH records on 8 April 2014 (refer to Appendix C of this report) found no EPA Records of Notices issued for the site. It should be noted that the OEH records of EPA notices for contaminated land do not provide records of all contaminated land in NSW. At the time of searching the records 352 sites in NSW were registered in the database.

A search of the licences, applications and notices under the POEO Public Register on 8 April 2014 (refer to Appendix C of this report) found no records for the subject site.

4.5 WorkCover NSW Records

A request was made to WorkCover NSW through the Stored Chemical Information Database (SCID) to search for any information on licences to store dangerous goods, including underground tanks and/or other underground facilities at the site.

A search of SCID and the microfiche records held by WorkCover NSW did not locate any records pertaining to the site (refer to Appendix D).

5

EOTECHNIQUE

5.0 SITE CONDITION AND SURROUNDING ENVIRONMENT

5.1 Site Condition

The site is owned by Canterbury City Council and currently leased to the Canterbury Bowling Club under a short-term lease arrangement.

An environmental engineer from Geotechnique made the following observations during field work on 18 March 2014.

- A club house, three bowling greens and a car park currently occupy the site.
- There were no obvious features associated with any underground storage tanks (bowser, breather pipe, inlet valve and piping) or odour that would indicate the potential for contamination.
- There were no visible or olfactory indicators of potential contamination.

5.2 Surrounding Environment

At the time of inspection observations of the neighbouring properties were as follows.

To the north	A railway line
To the west	A warehouse
To the south	Close Street
To the east	Residential apartments

There were no air emissions emanating from the site and neighbouring properties.

The site layout and surrounding properties are indicated on Drawing No 13138/1-AA1.

6.0 TOPOGRAPHY, GEOLOGY& HYDROGEOLOGY

In general, ground surface slopes from north to south.

The Geological Map of Sydney (Geological Series Sheet 9130, Scale 1:100,000, 1983) published by the Department of Mineral Resources indicates the residual soils within the site to be underlain by Triassic Age Hawkesbury Sandstone, comprising medium to coarse grained quartz sandstone, very minor shale and laminite lenses and / or Quaternary Age soils consisting of silty to peaty quartz sand, silt and clay ferruginous and humic cementation in places, common shell layers.

The Soil Landscape Map of Sydney (Soil Landscape Series Sheet 9130, Scale 1:100,000, 2002) prepared by the Soil Conservation Service of NSW indicates that the site is located within the Gymea landscape area and typically comprising shallow highly impermeable residual sandy soil.

Reference should be made to Table 1 in Appendix E for descriptions of the soils encountered during sampling for this assessment. Based on information from the borehole drilling the following four types of fill were encountered at most borehole locations across the site;

• Type 1 fill, comprising gravelly sand with thickness ranging from about 0.15m to 1.0m, grey, with inclusions of clay, underlain by natural sandy clay or clayey sand at BH1,BH2, BH8, BH9 and BH17.

- Type 2 fill, comprising sandy gravel with thickness ranging from about 0.4m to 1.0m, dark grey and black with inclusions of ash material, underlain by natural sandy clay at BH3, BH4, BH6, BH7, BH10, BH11 and BH13 to BH15.
- Type 3 fill, comprising sand with thickness of about 0.6m, grey, underlain by Type 4 fill at BH21.
- Type 4 fill, comprising silty clay, with thickness of about 3.1m and 1.05m, grey, with inclusions of shale and sandstone fragments and roots, underlain by natural sandy clay at BH16 and BH21.

Topsoil (thickness ranging from about 0.1m to 0.15m) comprising silty sand, underlain by sandstone, Type 2 / Type 4 fill or natural sandy clay ,was encountered at BH5, BH10 to BH12, BH14, BH15 and BH17 to BH21. Sandstone bedrock was encountered beneath the topsoil or natural sandy clay at BH4, BH5, BH12 and BH18. The depths to sandstone bedrock vary from about 0.3m to 3.0m from existing ground level (EGL).

Bitumen with thickness of about 0.05m, underlain by Type 1 fill or roadbase, was encountered in BH1, BH2, BH8 and BH9. Roadbase underlain by Type 1 fill was encountered in BH2.

No asbestos-cement pieces were noted in the recovered soil samples.

Groundwater or perched water was not encountered during sampling to a maximum depth of about 4.0m (BH1) below EGL and during the short time the boreholes remained open.

There is no waterbody such as a river or wetland close to the site. The Cooks River is located approximately 100m to the south of the site. Based on observation and site topography surface run-off would predominantly flow to the south. Obvious local depressions that might capture or divert stormwater run-off were not observed within the site.

A site-specific groundwater assessment was not considered necessary at the time of conducting this assessment as the initial appreciation of site issues did not identify potential for groundwater contamination. However, in order to obtain some understanding of regional groundwater conditions a search was carried out through the website of the Department of Natural Resources for any registered groundwater bore data within a radius of 1 kilometre (km) of the site. The search revealed three bores within this radius. The bores were drilled between 1996 and 2003 and the final drilling depths ranged from 5.0m to 90.0m. No details were provided regarding water bearing zones, standing water level and salinity. The bores were authorised and / or intended for domestic purposes. The information obtained is summarised in the following table and included in Appendix F of this report.

Bore	Date	Authorised/ Intended Purpose	AMG coordinates	Water Bearing Zone (m)	Standing Water Level (m)	Salinity (mg/L)
GW102402	01.01.1996	Domestic / -	₃ 26.938 _E & ₆₂ 46.390 _N	No Details	No Details	No Details
GW105215	05.06.2003	Domestic	₃ 25.448 _E & ₆₂ 46.456 _N	No Details	No Details	No Details
GW305694	20.02.2003	Domestic	₃ 26.438 _E & ₆₂ 44.811 _N	No Details	No Details	No Details

7.0 CONCEPTUAL SITE MODEL

7.1 Potential Areas of Environmental Concern

Based on the preceding sections, Areas of Environmental Concern (AEC) and associated contaminants of potential concern have been identified and are presented in the following Table 5.1.

Areas of Concern	Rationale / Detail	Potential Contaminants of Concern		
Around the club house	In the surface soils surrounding the club house there is potential for metals and asbestos contamination due to degradation of building materials, such as galvanised iron (GI) sheets, paint (if painted with lead based paint) and asbestos (if present) and / or possible pest control.	 Heavy Metals ¹ Organochlorine Pesticides (OCP) Asbestos 		
The site	 The site has been used for bowling activities, which indicate potential for applied agricultural chemicals and fertilisers. The use of agricultural chemicals and fertilisers could lead to Metals, Organophosphate Pesticides (OPP) and persistent OCP contamination. The predicted persistence of OCP is less than 15 years, whilst the predicted persistence of OPP is typically less than one year. 	 Heavy Metals ¹ OCP OPP 		
The site	 Fill was encountered across the site. Fill materials could have been imported from unknown sources, therefore, there is potential for the fill materials to be contaminated. 	 Heavy Metals ³ Total Petroleum Hydrocarbons (TPH) Benzene, Toluene, Ethyl Benzene and Xylenes (BTEX) Polycyclic Aromatic Hydrocarbons (PAH) OCP Polychlorinated Biphenyls (PCB) Cyanides Phenols Asbestos ⁴ 		
Building	 Due to the age of the building, features / structures, concealed pipes (water, sewer or stormwater), roofing materials, walls etc., in the building might contain asbestos. This can be ascertained by a hazardous materials survey of the building. 	> Asbestos		

Table 5.1 Areas of Environmental Concern& Associated Contaminants of Potential Concern

¹ Metals suite includes arsenic, lead and zinc.

² Metals suite includes cadmium, chromium, copper, lead, mercury, nickel and zinc

³ Metals suite includes arsenic, cadmium, chromium, copper, lead, mercury, nickel and zinc

⁴ Asbestos may present in fill materials with inclusions of demolition waste and / or fibro-cement pieces.

No information in relation to product spills / losses, discharges to the land, water or air associated with chemical storage at the site has been identified as part of this assessment.

7.2 Potentially Contaminated Media

Potentially contaminated media present at the site include fill material and natural soils / sandstone bedrock.

The historical review identified that previous site activities included bowling activities which might have impacted the historical soils. In addition, the presence of the fill across the site has the potential for impacted material to have been imported to the site.

Based on the potential mobility of contaminants and associated potential leachability through the soil / fill profile, vertical migration of contaminants from the surface soils and fill material into the underlying natural soils / sandstone bedrock might have occurred. As a result, the natural soils and underlying sandstone bedrock are also considered to be potentially contaminated media.

Groundwater or perched water was not encountered during sampling to a maximum depth of about 4.0m (BH1) below the EGL. Given the relatively impermeable nature of the natural residual soil beneath the site, groundwater underlying the site is considered to have a low potential to be impacted. However if a substantial source is identified within the soil on site a groundwater assessment might be necessary.

Surface water is not identified as a potentially contaminated medium based on the absence of any permanent waterbody transecting the site and the distance to the nearest permanent waterbody (>100m to the south of the site, Section 6.0).

7.3 Potential for Migration

Contaminants generally migrate from site via a combination of windblown dust, rainwater infiltration, groundwater migration and surface water run-off. The potential for contaminants to migrate is a combination of;

- The nature of the contaminants (solid / liquid and mobility characteristics)
- The extent of the contaminants (isolated or widespread)
- The locations of the contaminants (surface soils or at depth)
- The site topography, geology, hydrology and hydrogeology

Off-site impacts of contaminants in soil are generally governed by the transport media available and likely receptors. The most common transport medium is water, whilst receptors include initially uncontaminated soils, groundwater, surface waterbodies, humans, flora and fauna.

The potential contaminants identified as part of the site history review, site inspection and field sampling were generally in a solid form (e.g. heavy metals, PAH, OCP, asbestos, etc.).

The site is grass covered or sealed by hard stand (building and car park) across the majority of the surface. The potential for migration of contaminants via wind-blown dust is considered low as a result of the exposed soils within the site. The potential for migration of contamination via surface run-off is also expected to be minor. Some migration of contaminants via surface water might still occur in the event of heavy rain.

Migration of soil contaminants to the deeper soils or groundwater regime would generally be via leaching of contaminants from the surface soil or fill, facilitated by infiltration of surface water. Given that the naturally occurring soils beneath the site are relatively impermeable (refer to Section 6.0 for the regional geology information) the potential for recent and ongoing migration of contaminants from the site to the groundwater table below is considered low. Furthermore, the relatively impermeable clay layer would have minimised the potential for contaminants in the past to migrate to deeper soils or the groundwater regime. It is considered unlikely that the groundwater regime beneath the site has been impacted by contaminants in the soils. If high levels and widespread of contaminants are detected through this assessment a groundwater assessment will be recommended.

Sensitive receptors at the site under current site conditions and in the immediate vicinity are considered to include visitors who might come into contact with potentially contaminated media within the site.

8.0 DATA QUALITY OBJECTIVES

The data qualitative objectives (DQO) are qualitative and quantitative statements that specify the quality of the data required for the assessment. DQO must ensure that the data obtained is sufficient to characterise the contamination of a site and enable appropriate assessment of health and environmental risks for the current or proposed use. The DQO were developed for this assessment in accordance with the NSW Department of Environment and Conservation (DEC) (2006), Guidelines for the NSW Site Auditor Scheme (2nd edition), as well as in accordance with the Australian Standard "*Guide to the Sampling and Investigation of Potentially Contaminated Soil Part 1: Non-volatile and semi-volatile compounds*" (AS4482.1-2005) and "*Guide to the Sampling and Investigation of Potentially Contaminated Soil Part 2: Volatile substances*" (AS4482.2-1999). The DQO process adopted is outlined below.

State the Problem

The site is occupied by a club house, three bowling greens and a car park. The site was used for bowling activities. The majority of the site also contains fill materials. As a result, the potential exists for contamination to have occurred within the site in the past and presently.

It is understood that the site is proposed for redevelopment into commercial and residential high-rise buildings, including a multi-purpose community art cultural facility.

The 'problems' to be addressed are;

- What is the overall contamination status of the site and what is the extent of contamination?
- Whether the site is considered suitable for the proposed redevelopment?

The following key professional personnel were involved in the assessment:

John XuAssociateLan YeEnvironmental Engineer

GEOTECHNIQUE PTY LTD

13138/1-AA Lot 1 in DP818683 - 15 Close Street, Canterbury

Identify the Decisions

The decisions to be made in completing the assessment are as follows.

- Are there any unacceptable odours emanating from the site?
- Are there any unacceptable aesthetic issues within the site?
- Are there any unacceptable risks to site occupants or the environment under the proposed redevelopment?
- Are there any background soil contaminant levels within the site that pose a risk to future site occupants or the environment under the proposed redevelopment?
- Are there any human health risks posed by potential chemical mixtures within the site?
- Is there any evidence of, or potential for, migration of contaminants from the site?
- Is the site currently suitable for the proposed end use?
- Is further investigation required to adequately address the abovementioned decisions?
- Is further investigation required to delineate the extent of contamination / locations of concern identified?
- Does the site require remediation or management to ensure suitability for the proposed end use?

Identify Inputs to the Decisions

The inputs into the decision process are as follows.

- Historical information (presented in Section 4.0).
- Site operations and observation details (presented in Section 5.0).
- Systematic soil sampling at a density required to meet the NSW EPA "Sampling Design Guidelines".
- Soil profile information obtained through the sampling phase.
- PID data for the recovered fill samples recorded in the field.
- Chemical test data on analysed samples.
- Develop conceptual site model (presented in Section 7.0).
- Assessment of test results against applicable soil Investigation levels and screening levels in the National Environment Protection (Assessment of Site Contamination) Amendment Measure 2013 (Amendment NEPM 2013) and NSW Site Auditor Scheme, 2006 (Section 13.0). For asbestos assessment, the site must be free of asbestos-cement pieces and no asbestos fibre detected in the soils.

Define the Study Boundaries

The study boundary for this assessment is defined by the boundaries of the subject site as shown on Drawing No 13138/1-AA1 and summarised in Section 3.0 of this report.

The vertical boundary will be the depth within the soil profile to which contamination might have potentially migrated.

Develop a Decision Rule

The information obtained through this assessment will be used to characterise the site in terms of contamination issues and risk to human health and the environment. The decision rule in characterising the site will be as follows.

- The assessment criteria are the NSW EPA produced and / or endorsed criteria, as specified in Section 13.0 of this report. For asbestos assessment, the site must be free of asbestos-cement pieces and no asbestos fibre detected in the soils.
- The site will be deemed to potentially contain contamination "hot spots" if any of the individual concentrations exceed the assessment criteria adopted or any presence of asbestos-cement pieces / sheets and / or asbestos fibres in the samples analysed.
- Further investigation, remediation and / or management will be recommended if the site is found to be contaminated or containing contamination "hot spots".

Laboratory test results will only be accepted and considered useable for this assessment under the following conditions.

- All laboratories used are accredited by NATA for the analyses undertaken.
- All detection limits set by the laboratories fall below the assessment criteria adopted.
- Analyte concentrations in the rinsate water sample should be less than laboratory limits of reporting or should not be detected significantly.
- The recovery of spike concentrations in the trip spike sample is sufficient so as not to affect the reported concentrations of the soil samples when the same recovery is applied (BTEX only).
- The differences between the reported concentrations of analytes in the field duplicate samples and the corresponding original samples are within accepted limits (refer to Section 10.6).
- The differences between the reported concentrations of analytes in the inter-laboratory duplicate (split) samples and the corresponding original samples are within accepted limits (refer to Section 10.7).
- The QA / QC protocols and results reported by the laboratories comply with the requirements of the Amendment NEPM 2013 "Guideline on Laboratory Analysis of Potentially Contaminated Soils".

Specify Limits on Decision Errors

The limits on decision errors for this assessment are as follows.

- Systematic sample numbers comply with those recommended in the NSW EPA sampling design guidelines, which have risk probabilities already incorporated. Sample numbers are therefore considered adequate for site characterisation.
- Analyte selection is based on site history, site activities and the presence of the fill The possibility of any other potential contaminants that would be detected through field observation (through odours, staining, and colouring) may need to be included.
- The assessment criteria adopted from the guidelines stated in Section 13.0 have risk probabilities already incorporated.
- The acceptable limits for field and inter-laboratory duplicate (split) comparisons are outlined in Sections 10.6 and 10.7 of this report.

• The acceptance limits for laboratory QA/QC parameters are based on the laboratory reported acceptance limits and those stated in the NEPM 2013 "Guideline on Laboratory Analysis of Potentially Contaminated Soils".

Optimise the Design for Obtaining Data

- The procedures adopted for the location and collection of environmental samples were developed prior to implementation, in accordance with NSW EPA guidelines and current industry practice. The sampling program was designed to ensure integrity of data collection during the assessment, including decontamination techniques, sample labelling, storage and chain of custody protocols.
- The analytical program was developed in theory prior to undertaking the sampling (based on site history, site activities and the presence of the fill) and refined on the basis of field observations (both surface and sub-surface) during the sampling phase. All potential contaminants have been covered within the open area of the site.
- Only laboratories accredited by NATA for the analyses undertaken were used for this assessment. The laboratory performance is assessed through review of statistics calculated for QA samples such as blanks, spikes, duplicates and surrogates.
- The field QA / QC protocols adopted are outlined in Section 10.0 of this report. The QA / QC program incorporates preparation of traceable documentation of procedures used in the sampling and analytical program and in data validation procedures.

Data Quality Indicators

The performance of the assessment in achieving the DQO will be assessed through the application of Data Quality Indicators (DQI), defined as follows.

Precision	A quantitative measure of the variability (or reproducibility) of data;
Accuracy	A quantitative measure of the closeness of reported data to the "true" value;
Representativeness	The confidence (expressed qualitatively) that data is representative of each media present on the site;
Completeness	A measure of the amount of useable data from a data collection activity;
Comparability	The confidence (expressed qualitatively) that data can be considered equivalent for each sampling and analytical event.

An assessment of the data quality indicators is presented in Section 10.0 {**field procedures (soil sampling phase)**} and Section 11.0 {**laboratory procedures (analytical phase)**} of this report. A QA / QC data evaluation is presented in Section 12.0 of this report.

9.0 SAMPLING & ANALYSIS PLAN AND SAMPLING METHODOLOGY

Sampling and analyses for the contamination assessment were carried out to obtain a reasonable assessment of the following.

- 1. Nature, location and likely distribution of soil contaminants beneath the site.
- 2. The risks that the contaminants (if present) pose to human health or the environment under the conditions of the proposed redevelopment.

The risk of harm to human health and the environment was determined through comparison of test results with EPA produced or endorsed criteria available at the time, as discussed in Section 13.0 of this report.

Site sampling was carried out on 18 March 2014 by an Environmental Engineer from Geotechnique who was responsible for visually assessing the site, locating the boreholes as close as possible to nominated locations, recovery of soil samples, preparation of samples for delivery to NATA accredited laboratories and logging the sub-surface profile encountered at each borehole and sample location.

Based on the "Sampling Design Guidelines for Contaminated Sites" 1995, EPA for a site area of approximately 1.0ha, twenty one (21) sampling points are required. Boreholes BH1 to BH21, as shown on Drawing No 13138/1-AA1, were drilled using a stainless steel auger mounted on an excavator, as close as possible to a square grid pattern across the site. The systematic sampling strategy was adopted to provide representative coverage of potential fill areas. A number of soil samples were recovered

Prior to drilling a services locater scanned all the borehole locations to avoid any underground services.

The sampling procedures adopted were as follows;

- The sample location was drilled to a predetermined depth and the sample was recovered from the stainless steel auger using a stainless steel trowel.
- The auger or trowel was decontaminated prior to use in order to prevent cross contamination (refer to Section 9.3 for details of the procedures for decontamination of the auger or trowel).
- Two fill samples were recovered from each sampling depth, one for laboratory analysis, the other for head space screening for the presence of VOC using a calibrated PID.

To minimise the potential loss of organic compounds the recovered soil sample for laboratory analysis was immediately transferred to a labelled, laboratory supplied, 250ml glass jar and sealed with an airtight, Teflon screw top lid. The fully filled jar was then placed in a chilled container.

A soil sample for PID screening was placed in an airtight polyethylene bag, ensuring enough air space ('headspace') above the sample is present to be screened in the field. The soil sample remained in the bag for approximately 15 minutes before being shaken (to thoroughly mix soil with the air in the headspace) and a PID reading recorded. All PID readings were equal to 0.0ppm.

• The recovered fill sample for asbestos analysis was transferred into a small labelled plastic bag. The small plastic bags were placed inside a large plastic bag.

In order to ensure the analytical performance of the primary laboratory, duplicate and split samples were prepared for analyses. Samples were kept in a labelled laboratory supplied glass jar (acid-washed and solvent-rinsed) and sealed with an airtight, Teflon screw top lid. The fully filled jar was placed in a chilled container.

A rinsate water sample was collected and placed in a bottle and vial supplied by the laboratory on completion of field work. The fully filled bottle and vial were labelled and placed in a chilled container.

On completion of field sampling the chilled container was transported to our Penrith office. All the jars, bottle and vial were then transferred to a refrigerator where the temperature was maintained below 4°C.

The primary samples with trip spike samples in chilled container together with the large plastic bag were forwarded under COC conditions to the primary testing laboratory SGS Environmental Services (SGS). Inter-laboratory duplicate (split) samples were forwarded to the secondary testing laboratory Envirolab Services Pty Ltd (Envirolab). Both SGS and Envirolab are NATA accredited.

On receipt of the samples the laboratories returned the Sample Receipt Advice verifying the integrity of all samples received.

In order to maximise the spatial coverage of the analysis, discrete topsoil and fill soil samples were composited in the laboratory for chemical analysis of non-volatiles. Compositing of soil samples is suggested in "Sampling Design Guidelines for Contaminated Sites"-1995, EPA.

The methodology for compositing samples was generally adapted from "Composite Sampling, National Environmental Health Forum Monographs, Soil Services No 3", 1996-William H Lock, as follows.

- Three (3) equal-mass constituent samples were included in a composite sample.
- Each constituent sample was homogenised before sub-sampling and compositing of material was undertaken.

The following table details the compositing undertaken by the primary laboratory, as specified in the COC prepared by Geotechnique.

Composite Sample	Type of Soil	Sub-Samples
C1	Fill	BH1 (0.05-0.2m) + BH8 (0.05-0.2m) + BH9 (0.05-0.2m)
C2	Fill / Topsoil	BH2 (0.1-0.4m) + BH4 (0-0.3m) + BH5 (0-0.15m)
C3	Fill	BH3 (0-0.3m) + BH6 (0-0.3m) + BH7 (0-0.3m)
C4	Topsoil	BH10 (0-0.15m) + BH14 (00.15m) + BH15 (0-0.15m)
C5	Topsoil	BH11 (0-0.15m) + BH12 (0-0.15m) + BH13 (0-0.15m)
C6	Topsoil	BH16 (0-0.1m) + BH17 (0-0.15m) + BH18 (0-0.15m)
C7	Topsoil	BH19 (0-0.15m) + BH20 (0-0.15m) + BH21 (0-0.15m)
C8	Fill	BH10 (0.15-0.45m) + BH14 (0.2-0.5m) + BH15 (0.2-0.5m)
C9	Fill	BH11 (0.2-0.5m) + BH13 (0.3-0.6m) + BH15 (0.9-1.2m)

Composite Sample	Type of Soil	Sub-Samples
C10	Fill	BH16 (0.1-0.4m) + BH17 (0.2-0.5m) + BH21 (0.2-0.5m)
C11	Fill	BH16 (2.1-2.4m) + BH16 (3.1-3.4m) + BH21 (0.8-1.1m)

The soil profile encountered, as described in Section 6.0 of this report, did not reveal any visual (staining, dying) or olfactory indicators of potential contaminants, with the exception of ash material encountered in some of the fill layer. The PID readings on recovered fill samples were zero, suggesting that the presence of volatiles in the soil is unlikely. As a result and based on the potential for contamination identified in Section 7.0 the following laboratory analysis plan was implemented.

- All the composited soil samples and the corresponding duplicate and split samples were analysed for 8 metals including As, Cd, Cr, Cu, Pb, Hg, Ni and Zn, OCP and OPP.
- Two discrete fill samples and five discrete natural soil samples were analysed for 8 metals including As, Cd, Cr, Cu, Pb, Hg, Ni and Zn.
- For screening purposes seven composited samples and the corresponding duplicate and split samples were selected for analysis of PCB, Cyanides and Phenols.
- Ten discrete fill samples and the corresponding duplicate and split samples were analysed for TPH and BTEX.
- Twenty-four discrete fill samples and the corresponding duplicate and split samples were analysed for PAH.
- Nine discrete fill samples were analysed for asbestos for screening purposes.
- One rinsate sample R1 for metals, TPH, BTEX, PAH, OCP, OPP, PCB, Phenols and Cyanides.
- Trip spike sample TS1 for BTEX
- Twelve discrete soil samples were selected for Cation Exchange Capacity (CEC) and pH.
- Thirteen discrete soil samples were selected for Total Organic Carbon (TOC).

The laboratory testing schedule adopted is presented in Table A.

10.0 FIELD QUALITY ASSURANCE AND QUALITY CONTROL

10.1 Sampling Personnel

Geotechnique undertook all the sampling associated with this assessment. An Environmental Engineer from Geotechnique (Lan Ye) nominated sampling positions based on the project brief prepared by the Project Manager, supervised (full time) the drilling of each borehole, logged the soil profile encountered, recovered soil samples at a frequency determined by the sampling plan (project brief), carried out insitu PID screening and packaged the samples (refer to Section 9.0).

Lan Ye has a Master of Civil and Environmental degree and has been employed by Geotechnique as an Environmental Engineer since September 2011. At commencement of employment Lan Ye underwent supervised training in Geotechnique procedures for sampling and logging.

10.2 Field Instrument Calibration

As stated in Section 9.0 a calibrated PID was used in the field to screen for the presence of VOC in the recovered fill samples (head space screening). The PID was calibrated on-site on the day of field work before use. The PID calibration sheet is included in Appendix G of this report.

10.3 Decontamination Procedures

As stated in Section 9.0 of this report, soil sampling was carried out using a stainless steel auger mounted on an excavator. A stainless steel trowel was used to transfer the soil sample from the auger to the laboratory supplied glass jar. Decontamination of the auger or trowel involved the following;

- Removal of soils adhering to the auger or trowel by scrubbing with a brush;
- Washing the auger or trowel thoroughly in a solution of phosphate free detergent (Decon 90) using brushes and disposable towels;
- Rinsing the auger or trowel thoroughly with distilled water;
- Repeating the washing / rinsing steps and rinsing with water;
- Drying the auger or trowel with a clean cloth.

A sample of the final rinsate water sample was recovered at completion of sampling.

10.4 Rinsate Sample

One rinsate water sample (Rinsate R1) was recovered on completion of the day of field work in order to identify possible cross contamination between the sampling locations.

The rinsate water sample was analysed for metals, TPH, BTEX, PAH, OCP, OPP, PCB, Total Phenols and Total Cyanide. The test results for the rinsate water are summarised in Table B. A copy of the laboratory analytical report is included in Appendix H.

As shown in Table B, the concentrations of analytes in the rinsate sample were in general less than laboratory limits of reporting, which indicates that adequate decontamination had been carried out in the field.

10.5 Trip Spike Sample

Trip spike samples are obtained from the laboratory on a regular basis, prior to conducting field sampling where volatile substances are suspected. The samples are held in Penrith office of Geotechnique at less than 4 degrees Celsius for a period of not more than seven days. During field work the trip spike samples are kept in the chilled container with soil samples recovered from the site. The trip spike sample is then forwarded to the primary laboratory together with the soil samples recovered from the site.

The trip spike is prepared by the laboratory by adding a known amount of a pure petrol standard to a clean sand sample. The sample is mixed thoroughly to ensure a relatively homogenous distribution of the spike throughout the sample. When the sample is submitted for analysis the same procedure is adopted for testing as the soil samples being analysed from the site.

The purpose of the trip spike is to detect any loss, or potential loss, of volatiles from the soil samples, during field work, transportation, sample extraction or testing.

A trip spike sample (TS1) was forwarded to the primary analytical laboratory with the samples collected from the site and tested for BTEX. The test results for the trip spike sample, reported as a percentage recovery of the applied and known spike concentrations, are shown in Table C. A copy of the laboratory analytical report is included in Appendix H.

As indicated in Table C the results show a generally good recovery of the spike concentrations. Applying the losses experienced in the spike sample (worst case scenario) the actual concentrations of BTEX in each soil sample analysed might be at worst 0.14mg/kg (Benzene), 0.24mg/kg (Toluene), 0.13mg/kg (Ethyl benzene) and 0.39mg/kg (Xylenes). The concentrations in this case would still be considerably less than the relevant assessment criteria adopted (refer to Table I).

Furthermore, zero PID readings for the recovered samples were recorded in the field, BTEX results were in general less than laboratory detection limits and there was no visible or olfactory indication of hydrocarbon contamination.

Based on the above it is considered that any loss of volatiles from the recovered samples that might have occurred would not affect the outcome / conclusions of this report.

10.6 Duplicate Samples

A field duplicate sample was prepared in the field through the following processes;

- A larger than normal quantity of soil was recovered from the sample location selected for duplication;
- The sample was placed in a decontaminated stainless bowl and divided into two portions, using the decontaminated trowel;
- One portion of the sub-sample was immediately transferred, using the decontaminated trowel, into a labelled, laboratory supplied, 250ml glass jar and sealed with an airtight, Teflon screw top lid. The fully filled jar was labelled as the duplicate sample and immediately placed in a chilled container;
- The remaining portion was stored in the same way and labelled as the original sample.

Where original samples were to be composited (with the composite sample selected for duplication) the sub-samples of that composite were duplicated and submitted blind to the laboratory. Those sub-sample duplicates were then composited as requested in the COC and the results reported as a single duplicate.

Duplicate samples were prepared on the basis of sample numbers recovered during the field work. The duplicate sample frequency was computed using the total number of samples analysed as part of this assessment. The duplicate sample frequencies computed are as follows.

Heavy Metals:	18 samples analysed;	1 duplicate;	5.6% frequency
TPH & BTEX:	10 samples analysed;	1 duplicate;	10% frequency
PAH:	24 samples analysed;	1 duplicate;	4.2% frequency
OCP& OPP:	11 samples analysed;	1 duplicate;	9.1% frequency
PCB, Phenols & Cyanides:	7 samples analysed;	1 duplicate;	14.3% frequency

The duplicate frequency adopted complies with Schedule B3 of the National Environment Protection (Assessment of Site Contamination) Amendment Measure 2013 (Amendment NEPM 2013), which recommends a duplicate frequency of at least 5%.

The duplicate sample test results are presented with the analytical reports in Appendix H and summarised in Tables D1 and D2.

A comparison was made of the laboratory test results for the duplicate sample with the original sample, and the Relative Percentage Differences (RPD) were computed in order to assess the accuracy of the laboratory test procedures. RPD within 30% are generally considered acceptable. However, this variation can be higher for organic analysis than for inorganics and for low concentrations of analytes or non-homogeneous samples.

The comparisons between the duplicate and corresponding original samples indicated generally acceptable RPD, with the exception of higher RPD of Pb (43%) in Table D2, mainly due to the low concentration of the analyte and non-homogeneous nature of the soil samples.

The Pb concentrations with RPD in excess of 30% in the duplicate pair were both less than the assessment criterion.

Based on the above the variations are not considered critical. Based on the overall duplicate sample numbers and comparisons it is concluded that the test results provided by the primary laboratory (SGS) are of adequate accuracy and can be relied upon for this assessment.

10.7 Inter-laboratory Duplicate (Split) Samples

The inter-laboratory duplicate (split) sample provides a check on the analytical performance of the primary laboratory. The split sample was prepared on the basis of sample numbers recovered during field work, and the analyses undertaken by the primary laboratory.

The composite split sample was prepared in the same manner as the duplicate sample. Reference should be made to Section 10.6. Split samples were forwarded to a secondary laboratory (Envirolab) for analysis.

Where original samples were to be composited (with the composite sample selected for split), the subsamples of that composite were split and submitted blind to the laboratory. Those sub-sample splits were then composited as requested in the COC and the results reported as a single split.

The split sample frequency was computed using the total number of samples analysed as part of this assessment. The split sample frequencies computed are as follows:

Heavy Metals:	18 samples analysed;	1 split;	5.6% frequency
TPH & BTEX:	10 samples analysed;	1 split;	10% frequency
PAH:	24 samples analysed;	1 split;	4.2% frequency
OCP & OPP:	11 samples analysed;	1 split;	9.1% frequency
PCB, Phenols & Cyanides:	7 samples analysed;	1 split;	14.3% frequency

The split sample frequency adopted generally complies with Schedule B3 of the Amendment NEPM 2013, which recommends a frequency of 5%.

The laboratory certificate of analysis from Envirolab is included in Appendix H of this report. The results are summarised in Tables E1 and E2.

Based on Schedule B3 of the Amendment NEPM 2013 the difference in the results between the split samples should generally be within 30% of the mean concentration determined by both laboratories, i.e., RPD should be within 30%. However, higher variations can be expected for organic analyses compared to inorganic analyses and for samples with low analyte concentrations or non-homogeneous samples.

As shown in Tables E1 and E2 the comparisons between the splits and corresponding original samples indicated generally acceptable RPD, with the exception of higher RPD of Cr, Cu and Pb (ranging from 72% to 113%) in Table E2, which are in excess of 30%. This is considered to be due to the low concentrations of analytes detected and / or non-homogeneous nature of the soil samples.

All the concentrations of the analytes with RPD in excess of 30% in the split pair were less than the relevant assessment criteria.

Based on the above the variations are not considered critical. Based on the overall split sample numbers and comparisons it is concluded that the test results provided by the primary laboratory can be relied upon for this assessment

11.0 LABORATORY QUALITY ASSESSMENT AND QUALITY CONTROL

11.1 Laboratory Accreditation

Only laboratories accredited by the NATA for chemical analyses were used for analysis of samples recovered as part of this assessment. The laboratory must also incorporate quality laboratory management systems to ensure that trained analysts using validated methods and suitably calibrated equipment produce reliable results.

In addition to the quality control samples the laboratory must also ensure that all analysts receive certification as to their competence in carrying out the analysis and participate in national and international proficiency studies. SGS and Envirolab, the two laboratories used for this assessment, are both accredited by NATA. The two laboratories also operate Quality Systems designed to comply with ISO / IEC 17025.

11.2 Sample Holding Times

The following table lists the allowable holding times of soils and water, detailed in Schedule B3 of the Amendment NEPM 2013 and in Standard Methods for the Examination of Water and Wastewater (APHA).

ANALYTE	HOLDING TIME (SOIL)	HOLDING TIME (WATER)
Metals *	6 months	6 months
Mercury (Hg)	28 days	28 days
Total Petroleum Hydrocarbons (TPH)	14 days	7 days
Benzene, Toluene, Ethyl benzene and Xylenes (BTEX)	14 days	14 days
Polycyclic Aromatic Hydrocarbons (PAH)	14 days	7 days
Organochlorine Pesticides (OCP)	14 days	7 days
Organophosphorus Pesticides (OPP)	14 days	7 days
Polychlorinated Biphenyls (PCB)	28 days	7 days

ANALYTE	HOLDING TIME (SOIL)	HOLDING TIME (WATER)
Phenols	14 days	28 days
Cyanides	14 days	14 days
рН	7 days	-
Cation Exchange Capacity (CEC)	28 days	-
Total Organic Carbon (TOC)	28 days	-

* Metals include Arsenic, Cadmium, Chromium, Copper, Lead, Nickel and Zinc

It should be noted that there is no specific holding time for asbestos analysis.

The actual holding times of the two laboratories used for this assessment are shown in the laboratory analytical reports / certificate of analyses in Appendix H of this report. All analyses were conducted within the relevant holding times.

11.3 Test Methods and Limits of Reporting / Practical Quantitation Limits

The test methods and Limits of Reporting (LOR) / Practical Quantitation Limits (PQL) adopted by SGS and Envirolab are indicated with the analytical reports / certificate of analysis in Appendix H.

The samples analysed for TPH (C6–C9) and BTEX were extracted by the purge and trap method recommended by the NSW EPA.

All reported laboratory LOR / PQL were less than the assessment criteria adopted for each analyte or analyte group.

11.4 Method Blanks

Method blank samples are designed to monitor the introduction of incidental or accidental interferences into the analysis, which might result in a false increase in analyte concentration. The blank comprises reagents specific to each individual analytical method and is analysed in the same manner as the site sample. The reagents are carried through the preparation, extraction and digestion procedures and analysed at the beginning of every sample batch analysis, or at least 1 in 20 samples.

Reagent blank samples for soil samples were analysed by the primary and secondary laboratories for Metals, TPH, BTEX, PAH, OCP, OPP, Cyanides and / or Phenols.

The reagent blank sample for rinsate water sample was analysed for Metals, TPH, BTEX, PAH, OCP, OPP, Cyanides and Phenols by the primary laboratory (SGS).

All reported blank concentrations were below the LOR or PQL, as detailed in the laboratory test results certificates from SGS and Envirolab respectively. The results complied with the acceptance criteria for each laboratory (must not be detected at the LOR / PQL).

The test results indicate that there was no interference to the analysis.

11.5 Laboratory Duplicate Samples

The laboratory prepares duplicate samples from the supplied samples (original samples) and/or laboratory spiked samples, and carries out preparation and testing in the same manner as the original sample. The duplicate sample provides an indication of laboratory precision and reproducibility.

The laboratory prepared duplicates were analysed for the same range of analytes as the samples submitted from the site.

The comparisons between the laboratory duplicates and original samples have been reported on the laboratory test results certificates as RPD.

Maximum Allowable Difference (MAD) was suggested by SGS as RPD criteria for Lab Duplicates. Note: MAD = 100 x Statistical Detection Limit (SDL) / Mean + Limiting Repeatability (LR)

Reference may be made to SGS analytical reports in Appendix H for details of the reported duplicate sample numbers, RPD ranges, as well as acceptance criteria.

As presented in SGS analytical reports the duplicate sample numbers and reported RPD were within the acceptance criteria adopted by the laboratory.

No duplicate sample was reported for Envirolab but claims to run one sample in batches of 20 samples. The results are generally not reported with the laboratory certificates provided to clients; however, claim to be within the laboratory acceptance criteria.

Based on the above the duplicate sample numbers and reported RPD for SGS and Envirolab were within the acceptance criteria adopted by the laboratories.

11.6 Laboratory Control Samples

A laboratory control sample is a sample of material with known concentrations of various analytes, such as a standard reference material or control matrix. The control sample is analysed with the sample batch and the recorded concentrations reported as a percentage recovery of the known or expected concentration. At least one control sample is included in each run to confirm calibration validity.

The acceptance criteria for both laboratories are presented below.

- SGS: 70%-130% (soil) & 80%-120% (water) for inorganics and 60%-140% for organics, as detailed in the laboratory analytical reports from SGS.
- Envirolab: 60%-140% for organics and 70% to 130% for inorganics, as detailed in the laboratory certificates of analysis from Envirolab.

Reference may be made to SGS analytical reports and Envirolab certificate of analyses in Appendix H for details of the reported percentage recoveries.

The control samples data presented by the laboratories fall within the acceptance limits of the laboratories.

11.7 Matrix Spike

The purpose of matrix spikes is to monitor the performance of the analytical methods used and to determine whether matrix interferences exist. Samples are spiked with identical concentrations of the target analyte before extraction or digestion. The results are reported as percentage recoveries of the known spike concentration.

The acceptance criteria for SGS are 60% to 130% for organics and 70% to 130% for metals / inorganics.

The matrix spike data presented by SGS generally fall within the laboratory acceptance criteria, with the exception of the following failed matrix spike recoveries.

Batch	Reported Failed Recovery	Acceptance Criteria	Comments
SE126027	181% and 11% (for Pb and Zn for process batch sample)	70%-130%	Recovery failed acceptance criteria due to matrix interference

No matrix spike was reported for Envirolab, but claims to run one sample in batches of 20 samples. The results are generally not reported with the laboratory certificates provided to clients; however, claim to be within the laboratory acceptance criteria.

11.8 Surrogate Spikes

Surrogate spikes are used during analysis for organics to provide a means of checking that no gross errors have occurred at any stage of the procedure, leading to significant analyte losses. The surrogate spikes are added to each sample, blank, matrix spike, duplicate and control sample before the extraction stage. The percentage recovery of the known spike is recorded and reported on the laboratory reports / certificates.

The acceptance limits for the laboratories are as follows.

 SGS:
 60%-130% for soil and 40-130% for water

 Envirolab:
 60%-140%

Reference may be made to SGS analytical reports and Envirolab certificates of analyses in Appendix H for details of the reported recovery percentages.

As shown in laboratory reports / certificate, the surrogate spike data presented by the laboratories fall within the acceptance limits of the laboratories.

12.0 QA/QC DATA EVALUATION

All QA and QC details are presented in Sections 10.0 and 11.0 of this report.

The following table provides a list of the data quality indicators for the **soil sampling** phase of the assessment and the methods adopted in ensuring that the data quality indicators are met.

DATA QUALITY INDICATOR	ACHIEVEMENT	
Data Precision and Accuracy	Use of trained and qualified field staff;	
	Appropriately calibrated equipment used;	
	Appropriate industry standard decontamination procedures adopted;	
	Rinsate blank water, trip spike, field duplicate, and inter-laboratory duplicate (split) samples recovered or prepared;	
	Refer to the Section 10.0 for all the above.	
Data Representativeness	Good sampling coverage of the soils of concern;	
	Sample numbers complies with NSW EPA sampling design guidelines;	
	Representative coverage of potential contaminants, based on site history, site activities, the presence of the fill and soil profiles.	
Documentation Completeness	Preparation of borehole and sample location plans;	
	Records of soil profile logs / description tables;	
	Preparation of chain of custody records.	
Data Completeness	Sampling density meets the requirements of the EPA sampling design guidelines	
	Systematic soil sampling at predetermined locations, spacings and at depths;	
	All soils of concern (potential contamination) sampled;	
	On site visual assessment of soils uncovered.	
Data Comparability	Using appropriate techniques for sample recovery;	
	Using the same sampling and decontamination procedures for the fieldwork;	
	Experienced samplers used;	
	Using appropriate sample storage and transportation methods for sampling.	

The following table provides a list of the data quality indicators for the **analytical phase** of the assessment and the methods adopted in ensuring that the data quality indicators were met.

DATA QUALITY INDICATOR	ACHIEVEMENT
Data Precision and Accuracy	Use of analytical laboratories experienced in the analyses undertaken, with appropriate NATA certification;
	NATA accreditation requires adequately trained and experienced testing staff;
	Rinsate blank water, trip spikes, field duplicate, and inter-laboratory duplicate (split) samples analysed;
	Acceptable concentrations in rinsate blank water sample;
	Acceptable recoveries of spike concentrations in trip spike sample;
	Acceptable RPD for duplicate comparison overall;
	Acceptable RPD for inter-laboratory duplicate (split) sample comparison overall;
	Appropriate and validated laboratory test methods used;
	Adequate laboratory performance based on results of the blank, duplicate, control, matrix spike and surrogate samples.
Data Representativeness	Representative coverage of potential contaminants, based on site history, site activities, the presence of the fill and soil profiles;
	Adequate rinsate, trip spike, duplicate and split sample numbers;
	Adequate laboratory internal quality control and quality assurance methods, complying with the Amendment NEPM 2013.
Documentation Completeness	Preparation of chain of custody records;
	Laboratory sample receipt information received confirming receipt of samples intact and appropriate chain of custody;
	NATA registered laboratory analytical reports / certificate of analysis provided.
Data Completeness	Analysis for all potential contaminants of concern;
	Field duplicate sample and inter-laboratory duplicate (split) numbers complying with Amendment NEPM 2013;
	Rinsate sample recovered;
	Trip spike sample prepared and sent with sample batch.
Data Comparability	Use of NATA registered laboratories;
	Test methods consistent for each sample;
	Test methods comparable between primary and secondary laboratory;
	Generally acceptable Relative Percentage Differences between original samples and field duplicates and inter-laboratory duplicate (split) samples; Some high RPD recorded mainly due to low concentrations of analytes detected and / or due to heterogeneity of the fill sample.

As discussed in Section 10.0 some of the duplicate and split sample comparisons reported RPD exceeding the generally accepted limits for some metals. These have been attributed to low concentrations of analytes detected in duplicate / split and corresponding original samples and / or heterogeneity of the fill sample. The results are still considered acceptable as virtually all remaining QA / QC sample data fall within acceptance limits.

As discussed in Section 11.0, a relatively minor amount of SGS laboratory matrix spike recoveries failed acceptance criteria due to matrix interference. The results are still considered acceptable as virtually all remaining QA / QC sample data of both laboratories fall within the acceptance criteria adopted. As such, these variations are not considered to have affected the laboratory data provided.

Based on the above it is considered that the quality assurance and quality control data quality indicators have been complied with both in the field and in the laboratory. As such, it is concluded that the laboratory test data obtained as part of this assessment are reliable and useable for this assessment.

13.0 ASSESSMENT CRITERIA

Investigation levels and screening levels developed in the Amendment NEPM 2013 were used in this assessment, as follows;

• Risk-based Health Investigation Levels (HIL) for a broad range of metals and organic substances. The HIL are applicable for assessing human health risk via all relevant pathways of exposure. The HIL as listed in Table 1A (1) of Schedule B1 "*Guideline on Investigation Levels for Soil and Groundwater*" are provided for different land uses.

The site is proposed for redevelopment into commercial and residential high-rise buildings. Therefore, with regard to human health, analytical results will be assessed against risk based HIL for *residential with minimal opportunities to soil access* (HIL B).

 Health Screening Levels (HSL) for selected petroleum compounds, fractions and Naphthalene are applicable for assessing human health risk via inhalation and direct contact pathways. The HSL depend on specific soil physicochemical properties, land use scenarios and the characteristics of building structures. The HSL listed in Table 1A(3) of Schedule B1 "Guideline on Investigation Levels for Soil and Groundwater" apply to different soil types and depths below surface to >4 m.

For this assessment the analytical results were assessed against the available HSL for *high density residential land use* (HSL B) for sand and clay to depth of 0m to <2m and 0m to <4m respectively.

 Ecological Screening Levels (ESL) for selected petroleum hydrocarbon compounds, TPH fractions and Benzo(a)Pyrene are applicable for assessing the risk to terrestrial ecosystems. ESL listed in Table 1B(6) of Schedule B1 "Guideline on Investigation Levels for Soil and Groundwater" broadly apply to coarse and fine-grained soils and various land uses and are generally applicable to the top 2m of soil.

The analytical results were assessed against the available ESL for *urban residential and public open space* for coarse-grained soil (sand) and fine-grained soil (clay).

Ecological Investigation Levels (EIL), a specific type of Soil Quality Guidelines (SQG) for selected metals are applicable for assessing the risk to terrestrial ecosystems. EIL listed in Table 1B(1-5) of Schedule B1 "Guideline on Investigation Levels for Soil and Groundwater" depend on specific soil physicochemical properties and land use scenarios and generally apply to the top 2m of soil. The EIL are calculated using 30% effect concentration (EC30) or lowest observed effect concentrations (LOEC) toxicity data. EIL are the sum of the added contaminant limit (ACL) and the ambient background concentration (ABC).

Where required EIL are calculated directly by using EIL calculator developed by CSIRO for NEPC.

For this assessment the analytical results were assessed against the available EIL for *urban residential* land use for aged contamination in soil for low traffic volume.

 With regard to protection of the environment and impact on plant growth the available Provisional Phytotoxicity Based Investigation Levels (PIL) published in the *Guidelines for the NSW Site Auditor Scheme* (NSW EPA / DEC, 2006) and EIL published in the NEPM 1999 for cadmium and mercury are used.

The adopted assessment criteria are presented in the summarised Tables F1 to L.

In order to detect any potential "hot spots" of contamination within an individual composite soil sample an adjusted assessment criterion is recommended for assessment of results for individual composite samples, based on Method 1, Section 6 of the EPA "Sampling Design Guidelines" 1995. The adjusted assessment criteria presented in the applicable tables were calculated by dividing the assessment criteria by three (i.e. three sub-samples comprised the composite). Individual composite samples were assessed against the relevant adjusted assessment criteria.

If the concentration of an analyte for a composite soil sample is in excess of the adjusted assessment criterion, then all sub-samples of the failed composite samples will be analysed individually. The purpose of this is to detect potentially contaminated sub-samples within the failed composite sample.

For discrete soil samples the individual concentrations of analytes were assessed against the relevant assessment criteria.

For asbestos assessment the site must be free of asbestos pieces and no asbestos fibre detected in the soils.

The site will be deemed contaminated or containing contamination "hot spots" if the above criteria are unfulfilled. Further investigation, remediation and / or management will be recommended if the area of concern is found to be contaminated or contain contamination "hot spots".

14.0 FIELD & LABORATORY TEST RESULTS, ASSESSMENT & DISCUSSION

14.1 Field Results

Details of the sub-surface conditions encountered during field work for this assessment are presented in Table 1 in Appendix E of this report. As discussed in Section 6.0 the general soil profile comprised fill (gravelly sand, sandy gravel, sand and silty clay) overlying relatively impermeable residual sandy clay at most borehole locations across the site.

With the exception of bitumen or roadbase encountered in BH1, BH2, BH8 and BH9, as well as the inclusion of ash material noted in the fill layer in BH3, BH4, BH6, BH7, BH10, BH11 and BH13 to BH15, the remaining sample locations and recovered soil samples did not reveal any visual evidence of asbestos or other indicators of significant contamination, such as staining, odours or other foreign matter.

The PID readings on recovered fill samples were zero, suggesting that the presence of volatiles in the fill is unlikely.

14.2 Analytical Results

Reference may be made to Appendix H for the actual laboratory analytical reports from SGS. The metals, pH, CEC, TOC, TPH, BTEX, PAH, OCP, PCB, Cyanides, Phenols and OPP test results for the discrete and composited samples analysed are presented in Tables F1 to L together with the assessment criteria adopted. The asbestos test results for the discrete samples analysed are summarised in Table M.

A discussion of the test results is presented in the following sub-sections

14.2.1 Metals (As, Cd, Cr, Cu, Pb, Hg, Ni & Zn), pH, CEC & TOC

Discrete Samples

As presented in Tables F1 and F2, CEC, pH values and TOC range from 1.2cmol/kg to 38cmol/kg, 4.7 to 8.4 and 0.08% to 2.8% respectively.

As indicated in Tables F1 and F2, the concentrations of metals in the samples analysed were below the relevant available HIL B and / or EIL. All concentrations of Cd and Hg were also below the relevant PIL.

Composited Samples

As indicated in Tables G1 to G5 the concentrations of metals in the composited soil samples analysed were below the relevant Adjusted HIL B, Adjusted EIL and / or Adjusted PIL, with the exception of the highlighted concentrations of Cd, Cu, Hg, Ni and Zn.

The highlighted concentrations of Cd in Table G2 and Hg in Tables G2 and G3 exceeded the relevant Adjusted PIL but were below the relevant Adjusted HIL B.

The highlighted concentrations of Cu in Tables G2 and G4, Ni in Tables G2 and G3 and Zn in Table G2 exceeded the relevant Adjusted EIL but were below the relevant Adjusted HIL B.

The sub-samples of all the failed composite samples were therefore analysed for Cd, Cu, Hg, Ni and / or Zn. The test results are summarised in Tables H1, H2A, H2B and H3 to H5.

As indicated in Tables H1 and H3, the concentrations of Cd and Hg in all the discrete soil samples analysed were below the relevant HIL B and PIL adopted.

As shown in Tables H2A, H2B and H4, the concentrations of Cu and Ni in all the discrete soil samples analysed were below the relevant HIL B and EIL adopted.

As presented in Table H5, with the exception of the highlighted Zn concentration, the Zn concentrations in the remaining soil samples analysed were below the relevant HIL B and EIL adopted.

The highlighted Zn concentration (280mg/kg) in BH5 (0-0.15m) exceeded the EIL but was below the HIL B. The Zn concentration potentially poses a risk to terrestrial ecosystems. However, if the soil with elevated concentration of Zn remains insitu / is to be relocated and beneath a building / structure / road for the proposed redevelopment, the EIL will no longer be applicable.

14.2.2 TPH & BTEX

As indicated in Table I, the concentrations of F1 (TPH C6-C10 less BTEX), F2 (TPH >C10-C16 less Naphthalene), F3 (TPH >C16-C34), F4 (TPH >C34-C40) and BTEX were below the relevant available HSL B and / or ESL adopted. Moreover, the test results were in general below the laboratory LOR.

14.2.3 Polycyclic Aromatic Hydrocarbons (PAH)

As shown in Table J, with the exception of the highlighted concentrations of Benzo(a)pyrene (BaP), the BaP concentrations in the remaining soil samples analysed were below the ESL adopted.

29

13138/1-AA Lot 1 in DP818683 - 15 Close Street, Canterbury

The highlighted concentrations of BaP (ranging from 0.9mg/kg to 2.5mg/kg) in soil samples recovered from BH16, BH17 and BH21 exceeded the ESL of 0.7mg/kg. The BaP concentrations potentially pose a risk to terrestrial ecosystems. However, if the soil with elevated concentrations of BaP remains insitu / is to be relocated and beneath a building / structure / road for the proposed redevelopment, the EIL will no longer be applicable.

As summarised in Table J the concentrations of BaP (TEQ), Naphthalene and Total PAH were well below the relevant HIL B, HSL B and / or EIL adopted.

14.2.4 Organochlorine Pesticides (OCP)

As shown in Table K, the concentrations of OCP were well below the relevant Adjusted HIL B. Concentrations of DDT were also below the Adjusted EIL. With the exception of Dieldrin concentrations, the concentrations of the remaining OCP were less than the laboratory LOR.

14.2.5 Polychlorinated Biphenyls (PCB)

As presented in Table K, the concentrations of PCB were below the laboratory LOR.

14.2.6 Cyanides

As indicated in Table K, the concentrations of Cyanides were well below the Adjusted HIL B.

14.2.7 Phenols

As presented in Table K, the concentrations of Phenols were well below the Adjusted HIL B.

14.2.8 Organophosphorus Pesticides (OPP)

As shown in Table L, the concentrations of OPP were less than the laboratory LOR. Moreover the concentrations of Chlorpyrifos were well below the Adjusted HIL B.

14.2.9 Asbestos

As indicated in Table M, no asbestos was found in all the analysed soil samples.

15.0 CONCLUSION AND RECOMMENDATIONS

The data quality objectives outlined in this report have been satisfied. The findings of this Stage 1 PCA and Stage 2 DCA are summarised as follows.

- The site is occupied by a club house, three bowling greens and a car park. The site was used for bowling activities. The site also contains fill materials.
- The site is proposed for redevelopment into commercial and residential high-rise buildings, including a multi-purpose community art cultural facility. However, details of the proposed development are unknown at this stage.
- The site is generally underlain by fill with thickness ranging from about 0.15m to 3.3m, overlying relatively impermeable residual sandy clay.
- As presented in the summary tables and discussed in Section 14.0, most of the laboratory test results satisfied the criteria for stating that the analytes selected are either not present (i.e. concentrations less than laboratory limits of reporting), or present in the sampled soil at concentrations that do not pose a risk of hazard to human health or the environment for residential with minimal soil access.
13138/1-AA Lot 1 in DP818683 - 15 Close Street, Canterbury

Asbestos containing material was not encountered and asbestos was not detected in the soil samples analysed.

The surface soils and the deeper soils generally do not appear to have been impacted by past activities and the presence of fill, with the exception of locations of concern BH5, BH16, BH17 and BH21, as indicated and tabulated on Drawing No 13138/1-AA2. The elevated concentrations of Zn or BaP in soil around these locations potentially pose a risk to terrestrial ecosystems if not placed beneath a building / structure / road for the proposed redevelopment.

In addition, field work for this assessment revealed inclusion of ash material in the fill (sandy gravel) at locations BH3, BH4, BH6, BH7, BH10, BH11 and BH13 to BH15 (refer to Drawing No 13138/1-AA1).

• Due to the absence of significant chemical concentrations within the soils it is our opinion that potential off-site impacts of contaminants beneath the site on groundwater and waterbodies are low.

Based on this assessment it is considered that the site can be made suitable for the proposed redevelopment into commercial and residential high-rise buildings subject to implementation of the following recommendations, prior to site preparation and earthworks.

• Assessment of soils at and in the vicinity of the footprints of site features such as the club house, car park, etc., after complete demolition and removal. The purpose of this is to ascertain the presence or otherwise of "suspect" materials (identified by unusual staining, odour, discolouration or inclusions such as building rubble, asbestos, ash particles, etc.) and fill, which were not encountered during field work for this assessment.

Sampling and testing will be required to determine the contamination status of soils / fill at and in the vicinity of the footprints. In the event of contamination, detailed assessment, remediation and validation will be required.

- Depending on the layout and details of the proposed redevelopment, a further contamination assessment of topsoil or fill (gravelly sand or silty clay) around BH5, BH16, BH17 and BH21 (refer to Drawing No 13138/1-AA2), if not placed beneath a building / structure / road for the proposed redevelopment, should be carried out to assess the risk to terrestrial ecosystems and to determine the requirement for remediation / management.
- Inclusion of ash material in the fill (sandy gravel) was identified at BH3, BH4, BH6, BH7, BH10, BH11 and BH13 to BH15 (refer to Drawing No 13138/1-AA1). A further contamination assessment around those locations should be undertaken to determine the contamination status and to delineate the extent of the inclusion of ash material in the fill. Depending on the layout and details of the proposed redevelopment, aesthetic issues should be considered and addressed.

If suspect materials (identified by unusual staining, odour, discolouration or inclusions such as building rubble, asbestos sheets/pieces / pipes, ash material, etc.) are encountered during any stage of future earthworks / site preparation we recommend that this office is contacted for assessment and to take all necessary actions.

Any imported fill should be tested or appropriate validation certification provided by a qualified consultant, to ensure suitability for the proposed use. The imported fill must be free from asbestos, ash and odour, not be discoloured and acid sulphate soil. Environmentally, virgin excavated natural material (VENM) or excavated natural material (ENM) will be suitable for use as fill for the site. Salinity assessment might be required.

13138/1-AA Lot 1 in DP818683 - 15 Close Street, Canterbury

For any materials to be excavated and removed from the site it is recommended that waste classification of the materials, in accordance with the "Waste Classification Guidelines Part 1: Classifying Waste" Department of Environment, Climate Change and Water (DECCW), 2009 and NSW EPA guidelines for the resource recovery exemptions under the Protection of the Environment Operations (Waste) Regulation 2005, is undertaken prior to disposal at an appropriately licensed landfill or potential re-use at other sites.

16.0 LIMITATIONS

The services performed by Geotechnique were conducted in a manner consistent with the level of quality and skill generally exercised by members of the profession and consulting practice.

This report has been prepared for Canterbury City Council through JBA Urban Planning Consultants Pty Ltd for the purposes stated within. Council and any relevant authorities may rely on the report for development and building application assessment processes. Any reliance on this report by other parties shall be at such parties' sole risk as the report might not contain sufficient information for other purposes.

This report shall only be presented in full and may not be used to support any other objective than those set out in the report, except where written approval is provided by Geotechnique.

The information in this report is considered accurate at the completion of field sampling for this assessment (18 March 2014) in accordance with current site conditions. Any variations to the site form or use beyond the sampling date could nullify the conclusions stated.

Whilst investigations conducted at the site were carried out in accordance with current NSW guidelines the potential always exists for contaminated soils to be present between sampled locations.

Presented in Appendix I is a document entitled "Environmental Notes", which should be read in conjunction with this report.

GEOTECHNIQUE PTY LTD

LIST OF REFERENCES

Australian Standard "Guide to the Sampling and Investigation of Potentially Contaminated Soil Part 1: Non-volatile and semi-volatile compounds" (AS4482.1-2005)

Australian Standard "Guide to the Sampling and Investigation of Potentially Contaminated Soil Part 2: Volatile substances" (AS4482.2-1999)

Composite Sampling, National Environmental Health Forum Monographs, Soil Services No 3, - William H Lock 1996

Contaminated Land Management Act 1997

Contaminated Land Management Regulation 1998

Contaminated Sites: Guidelines for Consultants Reporting on Contaminated Sites – NSW Environment Protection Authority 2011

Contaminated Sites: Guidelines for the NSW Site Auditor Scheme (2nd Edition) - NSW DEC 2006

Contaminated Sites: Sampling Design Guidelines - NSW Environment Protection Authority 1995

Geology of Sydney 1:100,000 Sheet (9130) – Geological Survey of New South Wales, Department of Mineral Resources 1983

Managing Land Contamination: Planning Guidelines SEPP 55 – Remediation of Land – Department of Urban Affairs and Planning / NSW Environment Protection Authority 1998

National Environmental Protection (Assessment of Site Contamination) Amendment Measures 2013 -National Environmental Protection Council

National Environment Protection (Assessment of Site Contamination) Measure – National Environmental Protection Council 1999

Soil Landscape of Sydney 1:100,000 Sheet (9130) – Department of Land & Water Conservation 2002

DRAWINGS

Drawing No 13138/1-AA1 Drawing No 13138/1-AA2

Borehole Locations Locations of Concern

TABLES

Table A	Schedule of Laboratory Testing
Table B	Rinsate Sample
Table C	Trip Spike Sample
Table D1	Duplicate Sample
Table D2	Duplicate Sample
Table E1	Split Sample
Table E2	Split Sample
Table F1	Metals, Cation Exchange Capacity (CEC), pH,& Total Organic Carbon (TOC)
	Test Results – Discrete Samples
Table F2	Metals, Cation Exchange Capacity (CEC), pH, & Total Organic Carbon (TOC)
	Test Results – Discrete Samples
Table G1	Metals, Cation Exchange Capacity (CEC), pH, & Total Organic Carbon (TOC)
	Test Results – Composited Samples
Table G2	Metals, Cation Exchange Capacity (CEC), pH, & Total Organic Carbon (TOC)
	Test Results – Composited Samples
Table G3	Metals, Cation Exchange Capacity (CEC), pH, & Total Organic Carbon (TOC)
	Test Results – Composited Samples
Table G4	Metals, Cation Exchange Capacity (CEC), pH, & Total Organic Carbon (TOC)
	Test Results – Composited Samples
Table G5	Metals, Cation Exchange Capacity (CEC), pH, & Total Organic Carbon (TOC)
	Test Results – Composited Samples
Table H1	Cadmium Test Results – Sub-Samples
Table H2A	Copper Test Results – Sub-Samples
Table H2B	Copper Test Results – Sub-Samples
Table H3	Mercury Test Results – Sub-Samples
Table H4	Nickel Test Results – Sub-Samples
Table H5	Zinc Test Results – Sub-Samples
Table I	Total Petroleum Hydrocarbons (TPH) AND BTEX Test Results – Discrete Samples
Table J	Polycyclic Aromatic Hydrocarbons (PAH) Test Results – Discrete Samples
Table K	Organochlorine Pesticides (OCP), Polychlorinated Biphenyls (PCB), Cyanides and Phenols Test Results – Composited Samples
Table L	Organophosphorus Pesticides (OPP) Test Results – Composited Samples
Table M	Asbestos Test Results – Discrete Samples

TABLE A SCHEDULE OF LABORATORY TESTING (Ref No: 13138/1-AA)

						,		плед								
:	Sample	TYPE	SAMPLING DATE	DUPLICATE	SPLIT	Heavy Metals	TPH & BTEX	PAH	OCP \$ OPP	PCB	Phenols & Cyanides	BTEX	pН	CEC	TOC	ASBESTOS
Discrete S	Samples															
BH1	0.05-0.2	F	18/03/2014	X3			~	~					~	~	~	~
BH2	0.1-0.4	F	18/03/2014					~								
BH3	0-0.3	F	18/03/2014					~								
BH3	0.55-0.65	Ν	18/03/2014			~							~	~	~	
BH4	0-0.3	F	18/03/2014				~	>					~	~	~	~
BH6	0-0.3	F	18/03/2014					~								
BH6	0.45-0.55	Ν	18/03/2014			~							~	~	~	
BH7	0-0.3	F	18/03/2014		Z2		~	>					~	~	~	~
BH8	0.05-0.2	F	18/03/2014					>								
BH8	0.25-0.35	Ν	18/03/2014			~							~	~	~	
BH9	0.05-0.2	F	18/03/2014					>								
BH10	0-0.15	Т	18/03/2014										~	~	~	
BH10	0.15-0.45	F	18/03/2014				~	>								<
BH11	0.2-0.5	F	18/03/2014					>								
BH12	0-0.15	Т	18/03/2014										>	>	>	
BH13	0.3-0.6	F	18/03/2014				>	>								<
BH14	0.2-0.5	F	18/03/2014					>								
BH15	0.2-0.5	F	18/03/2014					>								
BH15	0.9-1.2	F	18/03/2014					>								
BH15	1.25-1.35	Ν	18/03/2014			~										
BH16	0.1-0.4	F	18/03/2014					>								
BH16	1.1-1.4	F	18/03/2014					>								
BH16	2.1-2.4	F	18/03/2014				~	>					~	~	~	~
BH16	3.1-3.4	F	18/03/2014					~								
BH16	3.45-3.55	N	18/03/2014			~										
BH17	0.2-0.5	F	18/03/2014				~	>					~	~	~	~
BH17	0.7-1.0	F	18/03/2014					~								
BH21	0.2-0.5	F	18/03/2014				~	~					~	~	~	~
BH21	0.8-1.1	F	18/03/2014					>								
BH21	1.3-1.6	F	18/03/2014			~	~	>				-	~	~	~	~
BH21	1.75-1.85	F	18/03/2014			~	~	~							~	
Composite	e Samples	-														
C1		F	18/03/2014	D101		~			~	•	~					
C2		F	18/03/2014		0404	~			~	~	~					
03		F	18/03/2014		\$101	`			~	~	~					
C4		I T	18/03/2014			~			~							
00		- I - T	18/03/2014			•			×							
00		<u>т</u>	18/03/2014			¥										
C9		-	19/03/2014			¥			<u> </u>							
C9		F	18/03/2014													
C10		F	18/03/2014													
C11		F	18/03/2014							Ĵ						
Rinsate R	1	<u> </u>	18/03/2014			-		~	-	Ĵ						
Trin Snike	TS1	<u> </u>	10/03/2014			•	•	*	•	•	•					
opino		1		1			1		1		1	•				

Heavy Metals: Aresenic, Cadmium, Chromium, Copper, Lead, Mercury, Nickel & Zinc Notes

TPH: Total Petroleum Hydroarbons BTEX: Benzene, Toluene, Ethyl Benzene, Xylenes PAH: Polycyclic Aromatic Hydrocarbons OCP: Organochlorine Pesticides

PCB : Polychlorinated Biphenyls

F, T, N; Fill, Topsoil, Natural Soil OPP: Organophosphorus Pesticides CEC: Cation Exchange Capacity TOC: Total Organic Carbon

TABLE B RINSATE SAMPLE (Ref No: 13138/1-AA)

page 1 of 2

	RINSATE
	R1
METALS	(mg/L)
Arsenic	0.02
Cadmium	<0.001
Chromium	<0.005
Copper	<0.005
Lead	<0.02
Mercury	<0.0001
Nickel	<0.005
Zinc	<0.01
TOTAL PETROLEUM HYDROCARBONS (TPH)	(µg/L)
F1 (C6-C10 less BTEX)	<50
F2 >C10-C16	<60
F3 (>C16-C34)	<500
F4 (>C34-C40)	<500
втех	(µg/L)
Benzene	<0.5
Toluene	<0.5
Ethyl Benzene	<0.5
Total Xylenes	<1.5
POLYCYCLIC AROMATIC HYDROCARBONS (PAH)	(µg/L)
Naphthalene	<0.1
Benzo(a)Pyrene TEQ	<0.2
Benzo(a)Pyrene	<0.1
Total PAH	<1

TABLE B RINSATE SAMPLE (Ref No: 13138/1-AA)

page 2 of 2

	RINSATE
	R1
ORGANOCHLORINE PESTICIDES (OCP)	(µg/L)
HEXACHLOROBENZENE (HCB)	<0.1
HEPTACHLOR	<0.1
ALDRIN	<0.1
DIELDRIN	<0.1
ENDRIN	<0.1
METHOXYCHLOR	<0.1
MIREX	<0.1
ENDOSULFAN (Alpha, Beta & Sulphate)	<0.3
DDD	<0.2
DDE	<0.2
DDT	<0.2
CHLORDANE (alpha & gamma)	<0.2
Organophosphorus Pesticides (OPP)	(µg/L)
Azinphos-methyl (Guthion)	<0.2
Bromophos Ethyl	<0.2
Chlorpyrifos (Chlorpyrifos Ethyl)	<0.2
Diazinon (Dimpylate)	<0.5
Dichlorvos	<0.5
Dimethoate	<0.5
Ethion	<0.2
Fenitrothion	<0.2
Malathion	<0.2
Methidathion	<0.5
Parathion-ethyl (Parathion)	<0.2
POLYCHLORINATED BIPHENYLS (PCB)	(µg/L)
Arochlor 1016	<1
Arochlor 1221	<1
Arochlor 1232	<1
Arochlor 1242	<1
Arochlor 1248	<1
Arochlor 1254	<1
Arochlor 1260	<1
Arochlor 1262	<1
Arochlor 1268	<1
PHENOLS & CYANIDES	(mg/L)
Total Phenols	<0.01
Total Cyanides	<0.005

TABLE C TRIP SPIKE SAMPLE (Ref No: 13138/1-AA)

ANALYTE	TRIP Spike TS1
ВТЕХ	
Benzene	74%
Toluene	82%
Ethyl Benzene	77%
Total Xylenes	77%

Note : results are reported as percentage recovery of known spike concentrations

.

TABLE D1 DUPLICATE SAMPLE (Ref No: 13138/1-AA)

	BH1	DUPLICATE	RELATIVE PERCENTAGE
ANALYTE	0.05-0.2 m	X3	DIFFERENCE (RPD)
	mg/kg	mg/kg	%
TOTAL PETROLEUM HYDROCARBONS (TPH)			
F1 C6-C10	<25	<25	-
F2 (>C10-C16 less Naphthalene)	<25	<25	-
F3 (>C16-C34)	<90	<90	-
F4 (>C34-C40)	<120	<120	-
втех			
Benzene	<0.1	<0.1	-
Toluene	<0.1	<0.1	-
Ethyl Benzene	<0.1	<0.1	-
Total Xylenes	<0.3	<0.3	-
POLYCYCLIC AROMATIC HYDROCARBONS			
Naphthalene	<0.1	<0.1	-
Benzo(a)Pyrene TEQ	<0.2	<0.2	-
Benzo(a)Pyrene	<0.1	<0.1	-
Total PAH	<0.8	<0.8	-

TABLE D2 DUPLICATE SAMPLE (Ref No: 13138/1-AA)

•

	COMPOSITE	DUPLICATE	RELATIVE PERCENTAGE
ANALYTE	C1	D101	DIFFERENCE (RPD)
	mg/kg	mg/kg	%
METALS			
Arsenic	3	<3	-
Cadmium	0.4	0.5	22
Chromium	13	17	27
Copper	72	68	6
Lead	11	17	43
Mercury	<0.01	0.03	-
Nickel	75	76	1
Zinc	45	50	11
ORGANOCHLORINE PESTICIDES (OCP)			
HEXACHLOROBENZENE (HCB)	<0.1	<0.1	-
HEPTACHLOR	<0.1	<0.1	-
ALDRIN	<0.1	<0.1	-
DIELDRIN	<0.05	<0.05	-
ENDRIN	<0.2	<0.2	-
METHOXYCHLOR	<0.1	<0.1	-
MIREX	<0.1	<0.1	-
ENDOSULFAN (Alpha, Beta & Sulphate)	<0.5	<0.5	-
DDD	<0.2	<0.2	-
DDE	<0.2	<0.2	-
DDT	<0.2	<0.2	-
CHLORDANE (alpha & gamma)	<0.2	<0.2	-
Organophosphorus Pesticides (OPP)			
Azinphos-methyl (Guthion)	<0.2	<0.2	-
Bromophos Ethyl	<0.2	<0.2	-
Chlorpyrifos (Chlorpyrifos Ethyl)	<0.2	<0.2	-
Diazinon (Dimpylate)	<0.5	<0.5	-
Dichlorvos	<0.5	<0.5	-
Dimethoate	<0.5	<0.5	-
Ethion	<0.2	<0.2	-
Fenitrothion	<0.2	<0.2	-
Malathion	<0.2	<0.2	-
Methidathion	<0.5	<0.5	-
Parathion-ethyl (Parathion)	<0.2	<0.2	-
POLYCHLORINATED BIPHENYLS (PCB)			
Total PCB	<1	<1	-
PHENOLS & CYANIDES			
Total Phenols	0.2	<0.1	-
Total Cyanides	0.1	0.1	0

TABLE E1 SPLIT SAMPLE (Ref No: 13138/1-AA)

	BH7	SPLIT SAMPLE	RELATIVE PERCENTAGE
ANALYTE	0-0.3m	Z2	DIFFERENCE (RPD)
	mg/kg	mg/kg	
	(SGS)	(ENVIROLAB)	%
TOTAL RECOVERABLE HYDROCARBONS (TRH)			
F1 (C6-C10 less BTEX)	<25	<25	-
F2 >C10-C16	<25	<50	-
F3 (>C16-C34)	<90	<100	-
F4 (>C34-C40)	<120	<100	-
втех			
Benzene	<0.1	<0.2	-
Toluene	0.2	<0.5	-
Ethyl Benzene	<0.1	<1	-
Total Xylenes	<0.3	<3	-
POLYCYCLIC AROMATIC HYDROCARBONS (PAH)			
Naphthalene	<0.1	<0.1	-
Benzo(a)Pyrene TEQ	<0.2	2	-
Benzo(a)Pyrene	<0.1	1	-
Total PAH	<0.8	11	-

TABLE E2 SPLIT SAMPLE (Ref No: 13138/1-AA)

	COMPOSITE	SPLIT	RELATIVE PERCENTAGE
ANALYTE	C3	S101	DIFFERENCE (RPD)
	mg/kg	mg/kg	
	(SGS)	(ENVIROLAB)	%
METALS			
Arsenic	<3	<3	-
Cadmium	0.4	0.5	22
Chromium	55	17	106
Copper	19	68	113
Lead	8	17	72
Mercury	0.03	0.03	0
Nickel	56	76	30
Zinc	39	50	25
ORGANOCHLORINE PESTICIDES (OCP)			
HEXACHLOROBENZENE (HCB)	<0.1	<0.1	-
HEPTACHLOR	<0.1	<0.1	-
ALDRIN	<0.1	<0.1	-
DIELDRIN	<0.05	<0.05	-
ENDRIN	<0.2	<0.2	-
METHOXYCHLOR	<0.1	<0.1	-
MIREX	<0.1	<0.1	-
ENDOSULFAN (Alpha, Beta & Sulphate)	<0.5	<0.5	-
DDD	<0.2	<0.2	-
DDE	<0.2	<0.2	-
DDT	<0.2	<0.2	-
CHLORDANE (alpha & gamma)	<0.2	<0.2	-
Organophosphorus Pesticides (OPP)			
Bromophos Ethyl	<0.2	<0.1	-
Chlorpyrifos	<0.2	<0.1	-
Diazinon	<0.5	<0.1	-
Dimethoate	<0.5	<0.1	-
Ethion	<0.2	<0.1	-
Fenitrothion	<0.2	<0.1	-
POLYCHLORINATED BIPHENYLS (PCB)			
Total PCB	<1	<1	-
PHENOLS & CYANIDES			
Total Phenols	0.7	<0.1	-
Total Cyanides	<0.1	0.1	-

TABLE F1 METALS, CATION EXCHANGE CAPACITY (CEC), pH & TOTAL ORGANIC CARBON (TOC) TEST RESULTS DISCRETE SAMPLES

		(Re	f No: 13	138/1	-AA)								
				METALS (mg/kg)									
Sample Location	Depth (m)	Soil Type	ARSENIC	CADMIUM	CHROMIUM (Total)	COPPER	LEAD	MERCURY	NICKEL	ZINC	CEC (cmolc/kg)	РН	TOC (%)
	0.05.0.0	-											
BH1	0.05-0.2	F	-	-	-	-	-	-	-	-	38	8.4	0.73
BH4	0-0.3	F	-	-	-	-	-	-	-	-	14	7.7	2.3
BH7	0-0.5	F	-	-	-	-	-	-	-	-	10	1.1	1.8
BHIU BHID	0-0.15	т Т	-	-	-	-	-	-	-	-	1.7	4.8 E 2	1.0
BH12	0-0.15	Г Г	-	-	-	-	-	-	-	-	4.3	5.2	2.0
BH16	2.1-2.4	F	-	-	-	-	-	-	-	-	15	4.9	0.08
	0.2-0.5	F	-	-	-	-	-	-	-	-	9.1	4.7	0.42
BH21	1.3-1.6	F	-		-	- 20	-	-	-	-	1.2	4.8 E 0	0.51
	1 75-1 85	F	12	<0.3	0.U 19	30	23	<0.05	4.0	41	11	5.8	0.17
BHZI	1.75-1.05	I	45	0.9	10	75	200	0.17	0.0	500	-	-	2.0
Limits of Reporting (LOR)	1		1	0.3	0.5	0.5	1	0.1	0.5	2	0.02	-	0.05
Limits of Reporting (LOR) NATIONAL ENVIRONMENT PROTECTION AMENDMENT MEASURE (2013) Health-based Investigation Levels Residential B (HIL B) a Ecological Investigation Level (EIL) ^b			500 100 ^e	150 -	500 [°] 190 ^f	30000 180	1200 9 1100	30 ^d -	1200 180	60000 420			
GUIDELINES FOR THE SITE AUDITOR SCHEM Provisional Phytotoxity-Ba	NSW E (2006) ased Investigation Le	evels (PIL)		3				1					

Notes	a:	Residential with minimal opportunities for soil access; includes dwellings with fully and permanently paved yard space such as high-rise buildings and apartments.
	b:	For aged metals derived from calculation spreadsheet developed by CSIRO for NEPC for old NSW suburb with low traffic volume; CEC=11; pH=5.8 cmolc/kg; TOC=2.8 $\%$
	c:	Chromium (VI)
	d:	Methyl Mercury
	e:	Generic EIL for aged arsenic - urban residential land use
	f:	Chromium (III), clay content was assumed =1%, a conservative assumption - urban residential land use
	g:	Generic EIL for Lead - urban residential land use

Canterbury City Council JX.pb/24.04.2014

TABLE F2 METALS, CATION EXCHANGE CAPACITY (CEC), pH & TOTAL ORGANIC CARBON (TOC) TEST RESULTS DISCRETE SAMPLES

		(Ի	ter No:	1313	8/1-A	A)							
				METALS (mg/kg)									
			ARSENIC	CADMIUM	CHROMIUM (Total)	COPPER	LEAD	MERCURY	NICKEL	ZINC	CEC (cmol₀/kg)	Hd	TOC (%)
Sample Location	Depth (m)	Soil Type											
BH3	0.55-0.65	Ν	4	<0.3	12	9.6	20	0.05	12	43	6.0	5.9	1.4
BH6	0.45-0.55	Ν	<3	<0.3	9.2	1.1	4	< 0.01	4.2	4.5	5.2	6.8	0.14
BH8	0.25-0.35	Ν	<3	<0.3	5.4	4.8	22	0.08	3.1	17	3.6	7.0	0.43
BH15	1.25-1.35	Ν	<3	<0.3	6.7	2.8	9	0.03	0.9	5.3	-	-	-
BH16	3.45-3.55	Ν	<3	0.3	7.8	9.9	23	0.49	2.4	22	-	-	-
Limits of Reporting (LOF	R)		1	0.3	0.5	0.5	1	0.05	0.5	2	0.02	-	0.05
NATIONAL ENVIRONMENT PROTECTION AMENDMENT MEASURE (2013) Health-based Investigation Levels Residential B (HIL B)		500	150	500 ^c 190 ^f	30000 40	1200 1100 ^g	30 ^d -	1200 20	60000 260				
Ecological Investigation Level (EIL) ^b GUIDELINES FOR THE NSW SITE AUDITOR SCHEME (2006)			3	100	τu	1100	1	20	200				

Notes

Residential with minimal opportunities for soil access; includes dwellings with fully and

permanently paved yard space such as high-rise buildings and apartments.

For aged metals derived from calculation spreadsheet developed by CSIRO for NEPC for old NSW suburb with low traffic volume; CEC=3.6; pH=5.9 cmolc/kg; TOC=0.14 %

Chromium (VI) c:

Methyl Mercury

d: e: Generic EIL for aged arsenic - urban residential land use

Chromium (III), clay content was assumed =1%, a conservative assumption - urban residential land use

Generic EIL for Lead - urban residential land use g:

Natural Soil

a:

b:

f:

N:

Canterbury City Council JX.pb/24.04.2014

TABLE G1 METALS, CATION EXCHANGE CAPACITY (CEC), pH & TOTAL ORGANIC CARBON (TOC) TEST RESULTS COMPOSITED SAMPLE (Ref No: 13138/1-AA)

(
Analytes				METALS	(mg/kg)						
	ARSENIC	CADMIUM	CHROMIUM (Total)	COPPER	LEAD	MERCURY	NICKEL	ZINC	CEC ^k (cmol _c /kg)	рН ^к	TOC ^k (%)
Composite Number											
C1	3	0.4	13	72	11	<0.01	75	45	38	8.4	0.73
Limits of Reporting (LOR)	1	0.3	0.5	0.5	1	0.05	0.5	2	0.02	-	0.05
NATIONAL ENVIRONMENT PROTECTION											
AMENDMENT MEASURE (2013)			,								
Health-based Investigation Levels Residential B (HIL B)	500	150	500 ່	30000	1200	30 9	1200	60000			
Adjusted HIL ^b	167	50	167	10000	400	10	400	20000			
Ecological Investigation Level (EIL) $^{\rm c}$ Adjusted EIL $^{\rm d}$	100 ^h 33	-	i 190 63	240 80	, 1100 367	-	420 140	1200 400			
GUIDELINES FOR THE NSW											
SITE AUDITOR SCHEME (2006)											
Provisional Phytotoxity-Based Investigation Levels (PIL)		3				1					
Adjusted PIL ^e		1				0.33					

Notes

Residential with minimal opportunities for soil access; includes dwellings with fully and permanently paved yard space such as highrise buildings and apartments.

b: Adjusted HIL=HIL/3;

a:

c: For aged metals derived from calculation spreadsheet developed by CSIRO for NEPC for old NSW suburb with low traffic volume; CEC=38; pH=8.4 cmolc/kg; TOC=0.73 %

d: Adjusted EIL=EIL/3

e: Adjusted PIL=PIL/3

f: Chromium (VI)

g: Methyl Mercury

h: Generic EIL for aged arsenic - urban residential land use

i: Chromium (III), clay content was assumed =2.5%, a conservative assumption - urban residential land use

j: Generic EIL for lead - urban residential land use

k: The test result of sub-sample BH1 (0.05-0.2m) was adopted.

TABLE G2 METALS, CATION EXCHANGE CAPACITY (CEC), pH & TOTAL ORGANIC CARBON (TOC) TEST RESULTS **COMPOSITED SAMPLES** (Ref No: 13138/1-AA)

Ana	lytes										
	ARSENIC	CADMIUM	CHROMIUM (Total)	COPPER	LEAD	MERCURY	NICKEL	ZINC	CEC ^k (cmol ₆ /kg)	рН ^к	TOC ^k (%)
Composite Number											
C2	<3	0.6	31	16	22	0.09	28	120	14	7.7	2.3
C4	<3	2.2	6.1	6.9	10	0.45	2.6	13	1.7	4.8	1.0
C5	5	0.8	7.5	19	23	0.3	2.7	21	4.3	5.2	2.0
C6	<3	1.1	9.8	12	21	0.92	3.1	29	-	-	-
C7	7	0.5	9.0	30	100	0.43	3.3	53	-	-	-
Limits of Reporting (LOR)	1	0.3	0.5	0.5	1	0.05	0.5	2	0.02	-	0.05
NATIONAL ENVIRONMENT PROTECTION											
AMENDMENT MEASURE (2013)			f			g					
Health-based Investigation Levels Résidential B (HIL B)	500) 150	500	30000	1200	30	1200	60000			
Adjusted HIL ⁵	167	7 50	167	10000	400	10	400	20000			
Ecological Investigation Level (FIL) ^c	100	h) -	i 190	50	1100	j _	8	130			
Adjusted EIL ^d	33	-	63	17	367	-	3	43			
GUIDELINES FOR THE NSW											
SITE AUDITOR SCHEME (2006)											
Provisional Phytotoxity-Based Investigation Levels (PIL)		3				1					
Adjusted PIL ^e		1				0.33					

Residential with minimal opportunities for soil access; includes dwellings with fully and permanently paved yard space such as high-rise a: Notes buildings and apartments.

Adjusted HIL=HIL/3 b:

For aged metals derived from calculation spreadsheet developed by CSIRO for NEPC for old NSW suburb with low traffic volume; c: CEC=1.7; pH=4.8 cmolc/kg; TOC=1 %

d: Adjusted EIL=EIL/3

Adjusted PIL=PIL/3 e:

Chromium (VI) f:

Methyl Mercury

g: h: Generic EIL for aged arsenic - urban residential land use

Chromium (III), clay content was assumed =1%, a conservative assumption - urban residential land use i:

j: Generic EIL for Lead - urban residential land use

The lowest test result of sub-sample BH10 (0-0.15m) was adopted. k:

TABLE G3 METALS, CATION EXCHANGE CAPACITY (CEC), pH & TOTAL ORGANIC CARBON (TOC) TEST RESULTS COMPOSITED SAMPLES (Ref No: 13138/1-AA)

	0.15	130/1	-~~)								
Analytes				METAL	.S (mg/ł	kg)					
	ARSENIC	CADMIUM	CHROMIUM (Total)	COPPER	LEAD	MERCURY	NICKEL	ZINC	CEC ^k (cmol ₆ /kg)	*Hq	TOC ^k (%)
Composite Number											
C3	<3	0.4	55	19	8	0.03	56	39	16	7.7	1.8
Split S101 (=C3)	<3	0.5	17	68	17	0.03	76	50	-	-	-
C8	<3	0.5	5.2	8.2	8	0.45	9.5	10	-	-	-
C9	<3	0.6	5.8	10	13	0.43	9.0	15	-	-	-
Limits of Reporting (LOR)	1	0.3	0.5	0.5	1	0.05	0.5	2	0.02	-	0.05
NATIONAL ENVIRONMENT PROTECTION											
AMENDMENT MEASURE (2013)			,			a					
Health-based Investigation Levels Residential B (HIL B)	500	150	500 ່	30000	1200	30 [°]	1200	60000			
Adjusted HIL ^b	167	50	167	10000	400	10	400	20000			
Ecological Investigation Level (EIL) $^{\circ}$ Adjusted EIL d	100 ^h 33	-	190 ⁱ 63	220 73	, 1100 367	-	230 77	660 220			
GUIDELINES FOR THE NSW											
SITE AUDITOR SCHEME (2006)											
Provisional Phytotoxity-Based Investigation Levels (PIL)		3				1					
Adjusted PIL ^e		1				0.33					

Notes

a: Residential with minimal opportunities for soil access; includes dwellings with fully and permanently paved yard space such as high-rise buildings and apartments.

b: Adjusted HIL=HIL/3

c: For aged metals derived from calculation spreadsheet developed by CSIRO for NEPC for old NSW suburb with low traffic volume; CEC=16; pH=7.7 cmolc/kg; TOC=1.8 %

d: Adjusted EIL=EIL/3

e: Adjusted PIL=PIL/3

f: Chromium (VI)

g: Methyl Mercury

h: Generic EIL for aged arsenic - urban residential land use

i: Chromium (III), clay content was assumed =1%, a conservative assumption - urban residential land use

j: Generic EIL for Lead - urban residential land use

k: The test result of sub-sample BH7 (0-0.3m) was adopted.

TABLE G4

METALS, CATION EXCHANGE CAPACITY (CEC), pH & TOTAL ORGANIC CARBON (TOC) TEST RESULTS COMPOSITED SAMPLE

(Ref No: 13138/1-AA)

Analytes				METAL	.S (mg/k	(g)					
	ARSENIC	CADMIUM	CHROMIUM (Total)	COPPER	LEAD	MERCURY	NICKEL	ZINC	CEC ^k (cmol ₆ /kg)	pH k	TOC ^k (%)
Composite Number											
C10	<3	0.4	5.7	9.2	21	0.13	1.5	15	1.2	4.7	0.08
Limits of Reporting (LOR)	1	0.3	0.5	0.5	1	0.05	0.5	2	0.02	-	0.05
NATIONAL ENVIRONMENT PROTECTION											
AMENDMENT MEASURE (2013)			f			a					
Health-based Investigation Levels Residential B (HIL B)	500	150	500	30000	1200	30 [°]	1200	60000			
Adjusted HIL ^b	167	50	167	10000	400	10	400	20000			
Ecological Investigation Level (EIL) $^{\circ}$	h 100	-	190 ⁱ	25	ز 1100	-	6	120			
Adjusted EIL ^d	33	-	63	8.3	367	-	2	40			
GUIDELINES FOR THE NSW SITE AUDITOR SCHEME (2006) Provisional Phytotoxity-Based Investigation Levels (PIL)		3				1					
Adjusted PIL [©]		1				0.33					

Notes

a: Residential with minimal opportunities for soil access; includes dwellings with fully and permanently paved yard space such as high-rise buildings and apartments.

b: Adjusted HIL=HIL/3

c: For aged metals derived from calculation spreadsheet developed by CSIRO for NEPC for old NSW suburb with low traffic volume; CEC=1.2; pH=4.7 cmolc/kg; TOC=0.08 %

d: Adjusted EIL=EIL/3

e: Adjusted PIL=PIL/3

f: Chromium (VI)

g: Methyl Mercury

h: Generic EIL for aged arsenic - urban residential land use

i: Chromium (III), clay content was assumed =1%, a conservative assumption - urban residential land use

j: Generic EIL for Lead - urban residential land use

k: The lowest test result of sub-samples was adopted.

TABLE G5 METALS, CATION EXCHANGE CAPACITY (CEC), pH & TOTAL ORGANIC CARBON (TOC) TEST RESULTS COMPOSITED SAMPLE (Def Net 12/29/(4 AA))

(Rei	NO: 1.	3130/	I-AA)								
Analytes				METAL	.S (mg/k	(g)					
	ARSENIC	CADMIUM	CHROMIUM (Total)	COPPER	LEAD	MERCURY	NICKEL	ZINC	CEC ^k (cmol ₀ /kg)	pH k	TOC ^k (%)
Composite Number											
C11	5	0.4	7.7	15	49	0.23	2.4	37	15	4.9	0.08
Limits of Reporting (LOR)	1	0.3	0.5	0.5	1	0.05	0.5	2	0.02	-	0.05
NATIONAL ENVIRONMENT PROTECTION											
AMENDMENT MEASURE (2013)			f			a					
Health-based Investigation Levels Residential B (HIL B)	500	150	500 ່	30000	1200	30 [°]	1200	60000			
Adjusted HIL ^b	167	50	167	10000	400	10	400	20000			
Ecological Investigation Level (EIL)	100 ^h	-	190 ⁱ	25	j 1100	-	220	250			
Adjusted EIL ^d	33	-	63	8.3	367	-	73	83			
GUIDELINES FOR THE NSW SITE AUDITOR SCHEME (2006)											
Provisional Phytotoxity-Based Investigation Levels (PIL)		3				1					
Adjusted PIL ^e		1				0.33					

Notes

a: Residential with minimal opportunities for soil access; includes dwellings with fully and permanently paved yard space such as high-rise buildings and apartments.

b: Adjusted HIL=HIL/3

c: For aged metals derived from calculation spreadsheet developed by CSIRO for NEPC for old NSW suburb with low traffic volume; CEC=15; pH=4.9 cmolc/kg; TOC=0.08 %

d: Adjusted EIL=EIL/3

e: Adjusted PIL=PIL/3

f: Chromium (VI)

g: Methyl Mercury

h: Generic EIL for aged arsenic - urban residential land use

i: Chromium (III), clay content was assumed =1%, a conservative assumption - urban residential land use

j: Generic EIL for Lead - urban residential land use

k: The test result of sub-sample BH16 (2.1-2.4m) was adopted.

TABLE H1 CADMIUM TEST RESULTS SUB-SAMPLES (Ref No: 13138/1-AA)

		Analyte	CADMIUM
Composite Number	Sub-Sample	Depth (m)	(mg/kg)
	BH10	0-0.15	0.7
C4	BH14	0-0.15	1.8
	BH15	0-0.15	2.2
	BH16	0-0.1	0.5
C6	BH17	0-0.15	0.4
	BH18	0-0.15	1.7
Limit of Reporting (LOR))		0.3
NATIONAL ENVIRONM	MENT PROTECTION		
AMENDMENT MEASU	RE (2013)		
Health-based Investigation	on Levels Residential B	(HILB) ^a	150
Ecological Investigation	Level (EIL)		3

a:

a:

b:

c:

Residential with minimal opportunities for soil access; includes dwellings with fully and permanently paved yard space such as high-rise buildings and apartments.

TABLE H2A COPPER TEST RESULTS SUB-SAMPLES (Ref No: 13138/1-AA)

		Analyte	COPPER
Composite Number	Sub-Sample	Depth (m)	(mg/kg)
	BH11	0-0.15	4.0
C5	BH12	0-0.15	9.6
	BH13	0-0.15	11
	BH19	0-0.15	67
C7	BH20	0-0.15	17
	BH21	0-0.15	8.3
Limit of Reporting (LOR)			0.5
NATIONAL ENVIRONM	IENT PROTECTION		
AMENDMENT MEASU	RE (2013)		
Health-based Investigation	on Levels Residential B	(HIL B) a	30000
Ecological Investigation Level (EIL)			50 ^b
EL			100 °

Residential with minimal opportunities for soil access; includes dwellings with fully and permanently paved yard space such as high-rise buildings and apartments.

For aged metals derived from calculation spreadsheet developed by CSIRO for NEPC for old NSW suburb with low traffic volume; CEC=1.7 cmolc/kg, pH=4.8, TOC=1.0% based on the lowest test results for BH10 (0-0.15m).

For aged metals derived from calculation spreadsheet developed by CSIRO for NEPC for old NSW suburb with low traffic volume; CEC=4.7 cmolc/kg, pH=5.9,TOC=1.9% based on test results for BH19 (0-0.15m).

TABLE H2B COPPER TEST RESULTS SUB-SAMPLES

(Ref No: 13138/1-AA)

		Analyte	COPPER
Composite Number	Sub-Sample	Depth (m)	(mg/kg)
	BH16	0.1-0.4	14
C10	BH17	0.2-0.5	20
	BH21	0.2-0.5	2.2
	BH16	2.1-2.4	13
C11	BH16	3.1-3.4	11
	BH21	0.8-1.1	13
Limit of Reporting (LOR))		0.5
NATIONAL ENVIRONM	MENT PROTECTION		
AMENDMENT MEASU	RE (2013)		
Health-based Investigation Levels Residential B (HIL B)		(HILB) ^a	30000
Ecological Investigation	Level (EIL)		25

a:

Residential with minimal opportunities for soil access; includes dwellings with fully and permanently paved yard space such as high-rise buildings and apartments.

TABLE H3 MERCURY TEST RESULTS SUB-SAMPLES (Ref No: 13138/1-AA)

		Analyte	MERCURY
Composite Number	Sub-Sample	Depth (m)	(mg/kg)
	BH10	0-0.15	0.63
C4	BH14	0-0.15	0.23
	BH15	0-0.15	0.85
	BH16	0-0.1	0.65
C6	BH17	0-0.15	0.85
	BH18	0-0.15	0.68
	BH19	0-0.15	0.13
C7	BH20	0-0.15	0.69
	BH21	0-0.15	0.29
	BH10	0.15-0.45	0.34
C8	BH14	0.2-0.5	0.23
	BH15	0.2-0.5	0.45
	BH11	0.2-0.5	0.47
C9	BH13	0.3-0.6	0.11
	BH15	0.9-1.2	0.36
Limit of Reporting (LOR)			0.05
NATIONAL ENVIRONM	IENT PROTECTION		
AMENDMENT MEASU	RE (2013)		
Health-based Investigation	on Levels Residential B	(HIL B) ^a	30
Ecological Investigation	Level (EIL)		1

a:

Residential with minimal opportunities for soil access; includes dwellings with fully and permanently paved yard space such as high-rise buildings and apartments.

TABLE H4 NICKEL TEST RESULTS SUB-SAMPLES

(Ref No: 13138/1-AA)

		Analyte	NICKEL
Composite Number	Sub-Sample	Depth (m)	(mg/kg)
	BH2	0.1-0.4	1.8
C2	BH4	0-0.3	43
	BH5	0-0.15	3.8
	BH16	0-0.1	4.4
C6	BH17	0-0.15	1.5
	BH18	0-0.15	3.5
	BH19	0-0.15	3.7
C7	BH20	0-0.15	3.8
	BH21	0-0.15	3.1
Limit of Reporting (LOR))		0.5
NATIONAL ENVIRON	MENT PROTECTION		
AMENDMENT MEASU	RE (2013)		
Health-based Investigati	on Levels Residential	B (HIL B)	1200
Ecological Investigation	Level (EIL)	8 ^b	
EL		210 [°]	

a:

Residential with minimal opportunities for soil access; includes dwellings with fully and permanently paved yard space such as high-rise buildings and apartments.

b:

c:

For aged metals derived from calculation spreadsheet developed by CSIRO for NEPC for old NSW suburb with low traffic volume; CEC=1.7 cmolc/kg based on the lowest test result for BH10 (0-0.15m).

For aged metals derived from calculation spreadsheet developed by CSIRO for NEPC for old NSW suburb with low traffic volume; CEC=14 cmolc/kg based on test result for BH4 (0-0.3m).

TABLE H5 ZINC TEST RESULTS SUB-SAMPLES

		Analyte	ZINC						
Composite Number	Sub-Sample	Depth (m)	(mg/kg)						
	BH2	0.1-0.4	11						
C2	BH4	0-0.3	32						
	BH5	0-0.15	320						
	BH19	0-0.15	60						
C7	BH20	0-0.15	44						
	BH21	0-0.15	18						
Limit of Reporting (LOR)			2						
NATIONAL ENVIRONM	ENT PROTECTION								
AMENDMENT MEASUF	RE (2013)								
Health-based Investigatio	on Levels Residential B	(HIL B)	60000						
Ecological Investigation L	evel (EIL)		130 ^b						
EIL			280 [°]						

a: Residential with minimal opportunities for soil access; includes dwellings with fully and permanently paved yard space such as high-rise buildings and apartments.

b: For aged metals derived from calculation spreadsheet developed by CSIRO for NEPC for old NSW suburb with low traffic volume; CEC=1.7 cmolc/kg, pH=4.8 based on the lowest test results for BH10 (0-0.15m).

c: For aged metals derived from calculation spreadsheet developed by CSIRO for NEPC for old NSW suburb with low traffic volume; CEC=4.2 cmolc/kg, pH=6.7 based on test results for BH5 (0-0.15m).

TABLE I TOTAL PETROLEUM HYDROCARBONS (TPH) AND BTEX TEST RESULTS DISCRETE SAMPLES (Ref No: 13138/1-AA)

		Analyte		TF	PH (mg/l	(g)			BTEX	(mg/kg)	
			F1	F2*	F2**	F3	F4	BENZENE	TOLUENE	ETHYLBENZENE	XYLENES
Sample Location	Depth (m)	Soil type									
BH1 BH4 BH7 BH10 BH13 BH16 BH17 BH21 BH21 BH21 Limits of Reporting (LC	0.05-0.2 0-0.3 0-0.3 0.15-0.45 0.3-0.6 2.1-2.4 0.2-0.5 0.2-0.5 1.3-1.6 1.75-1.85	Sand Sand Sand Sand Clay Sand Clay Clay	<25 <25 <25 <25 <25 <25 <25 <25 <25 <25	<25 <25 <25 <25 <25 <25 <25 <25 <25 <25	<25 <25 <25 <25 <25 <25 <25 <25 <25 <25	<90 <90 <90 <90 <90 130 <90 <90 250 90	<120 <120 <120 <120 <120 <120 <120 <120	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 0.2 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3
NATIONAL ENVIRON AMENDMENT MEASI Health Screening Le High density residentia	MENT PROTECT JRE (2013) vel B (HSL B) al ^a	ΓΙΟΝ									
0 m to <1 m - Sand			45	110				0.5	160	55	40
0 m to <1 m - Clay 1 m to <2 m - Clay 2 m to <4 m - Clay			50 90 150	280 NL NL				0.7 1 2	480 NL NL	NL NL NL	110 310 NL
Ecological Screening Urban residential and p	J Levels (ESLs) public open space										
Coarse-grained soil (sa	and)		180		120	300	2800	50	85	70	105
Fine-grained soil (clay)			180		120	1300	5600	65	105	125	45

Notes

a: Residential with minimal opportunities for soil access; includes dwellings with fully and permanently paved yard space such as high-rise buildings and apartments.

F1: C6-C10 less BTEX F2*: >C10-C16 less Naphthalene F2**: >C10-C16 F3: >C16-C34 F4: >C34-C40 NL: Not Limiting

TABLE J

POLYCYCLIC AROMATIC HYDROCARBONS (PAH) TEST RESULTS DISCRETE SAMPLES (Ref No: 13138/1-AA)

		Analytes		PAH(m	g/kg)	
Sample Location	Depth (m)	Soil Type	Berzo(a)Pyrene (BaP)	Bap TEQ	NAPHTHALENE	TOTAL PAHS
BH1	0.05-0.2	Sand	<0.1	<0.2	<0.1	<0.8
BH2	0.1-0.4	Sand	<0.1	<0.2	<0.1	<0.8
BH3	0-0.3	Sand	<0.1	<0.2	<0.1	<0.8
BH4	0-0.3	Sand	<0.1	<0.2	<0.1	<0.8
вно	0-0.3	Sand	<0.1	< 0.2	<0.1	<0.8
BH7 BH8	0.05-0.2	Sand	<0.1	<0.2	<0.1	<0.8
вня	0.05-0.2	Sand	<0.1	<0.2	<0.1	<0.8
BH10	0 15-0 45	Sand	<0.1	<0.2	<0.1	<0.8
BH10 BH11	0.2-0.5	Sand	<0.1	<0.2	<0.1	<0.8
BH13	0.3-0.6	Sand	<0.1	<0.2	<0.1	<0.8
BH14	0.2-0.5	Sand	<0.1	<0.2	<0.1	<0.8
BH15	0.2-0.5	Sand	<0.1	<0.2	<0.1	<0.8
BH15	0.9-1.2	Sand	<0.1	<0.2	<0.1	<0.8
BH16	0.1-0.4	Clay	0.6	0.8	<0.1	5.9
BH16	1.1-1.4	Clay	0.3	0.4	<0.1	2.4
BH16	2.1-2.4	Clay	0.8	1.1	<0.1	7.6
BH16	3.1-3.4	Clay	0.9	1.2	<0.1	10
BH17	0.2-0.5	Sand	2.4	3.4	<0.1	22
BH17	0.7-1.0	Sand	0.2	0.3	<0.1	2.2
BH21	0.2-0.5	Sand	<0.1	<0.2	<0.1	<0.8
BH21	0.8-1.1	Clay	0.5	0.7	<0.1	4.6
BH21	1.3-1.6	Clay	0.2	0.3	<0.1	2.2
BH21	1.75-1.85	Clay	2.5	3.6	0.2	29
Limits of Reporting (L	-OR)		0.1	0.2	0.1	0.8
NATIONAL ENVIRO AMENDMENT MEA Health-based Investig	DINMENT PROTECT SURE (2013) gation Levels Reside	FION ential B (HIL B) ^a		4		400
Health Screening Lev	/el B (HSL B)					
0 m to <1 m - Sand	aı				3	
1 m to <2 m - Sand					NL	
0 m to <1 m - Clay					5	
3 m to <4 m - Clay					NL	
Ecological Investigati	on Level (EIL)				170	D
Ecological Screening Coarse-grained soil (0.7 ^c					
Natao	<u>.</u>	Decidential with with	nol	etu 100 141	for	00000
notes:	a: b:	Generic ElL for Napht	nai oppo nalene - u	runities	ior soil	access; land use

ESL for Benzo(a)Pyrene - urban residential land use NL: Not Limiting

c:

Canterbury City Council JX.pb/24.04.2014

TABLE K

ORGANOCHLORINE PESTICIDES (OCP), POLYCHLORINATED BIPHENYLS (PCB), CYANIDES & PHENOLS TEST RESULTS COMPOSITED SAMPLES (Ref No: 13138/1-AA)

8	r	(110)	110.	10100		<u> </u>									
Analyte						OCP	? (mg/k	g)					(mg/kg)	(mg/kg)	(mg/kg)
	HEXACHLOROBENZENE (HCB)	HEPTACHLOR	ALDRIN	DIELDRIN	ENDRIN	METHOXYCHLOR	MIREX	ENDOSULFAN °	DDD	DDE	DDT	CHLORDANE (alpha & gamma)	PCB	Cyanides	Phenols
Composite Number			~				~ .								
C1	<0.1	<0.1	<0.1	<0.05	<0.2	<0.1	<0.1	<0.5	<0.2	<0.2	<0.2	<0.2	<1	0.1	0.2
C2	<0.1	<0.1	<0.1	<0.05	<0.2	<0.1	<0.1	<0.5	<0.2	<0.2	<0.2	<0.2	<1	0.2	1.6
C3	<0.1	<0.1	<0.1	<0.05	<0.2	<0.1	<0.1	<0.5	<0.2	<0.2	<0.2	<0.2	<1	<0.1	0.7
C4	<0.1	<0.1	<0.1	0.30	<0.2	<0.1	<0.1	<0.5	<0.2	<0.2	<0.2	<0.2	-	-	-
C5	<0.1	<0.1	<0.1	0.16	<0.2	<0.1	<0.1	<0.5	<0.2	<0.2	<0.2	<0.2	-	-	-
C6	<0.1	<0.1	<0.1	0.48	<0.2	<0.1	<0.1	<0.5	<0.2	<0.2	<0.2	<0.2	-	-	-
C7	<0.1	<0.1	<0.1	0.21	<0.2	<0.1	<0.1	<0.5	<0.2	<0.2	<0.2	<0.2	-	-	-
C8	<0.1	<0.1	<0.1	0.10	<0.2	<0.1	<0.1	<0.5	<0.2	<0.2	<0.2	<0.2	<1	<0.1	<0.1
C9	<0.1	<0.1	<0.1	0.11	<0.2	<0.1	<0.1	<0.5	<0.2	<0.2	<0.2	<0.2	<1	0.1	0.2
C10	<0.1	<0.1	<0.1	0.23	<0.2	<0.1	<0.1	<0.5	<0.2	<0.2	<0.2	<0.2	<1	<0.1	0.2
C11	<0.1	<0.1	<0.1	0.15	<0.2	<0.1	<0.1	<0.5	<0.2	<0.2	<0.2	<0.2	<1	<0.1	0.1
Limits of Reporting (LOR)	0.1	0.1	0.1	0.05	0.2	0.1	0.1	0.5	0.2	0.2	0.2	0.2	1	0.1	0.1
NATIONAL ENVIRONMENT PROTECTION AMENDMENT MEASURE (2013)															
Health-based Investigation Levels Residential B (HL B)	15	10	10 ^d	10 1	20	500	20	400	600 [°]	600 ^e	600 ^e	90	1	300	45000
Adjusted HIL ^b	5	3.3	3.3	3.3	6.7	167	6.7	133	200	200	200	30	0.3	100	15000
Ecological Investigation Level (EIL) Adjusted EIL ^b											180 ^f 60	-			

Notes a: Residential with minimal opportunities for soil access; includes dwellings with fully and permanently paved yard space such as high-rise buildings and apartments.

b Adjusted HIL=HIL/3;Adjusted EIL=EIL/3

C: Alpha Endosulfan + Beta Endosulfan + Endosulfan Sulphate

d: Aldrin + Dieldrin e: DDD + DDE + DDT

f: Generic EIL for DDT - urban residential land use

Canterbury City Council JX.pb/24.04.2014

TABLE L ORGANOPHOSPHORUS PESTICIDES (OPP) TEST RESULTS COMPOSITED SAMPLES (Ref No: 13138/1-AA)

(1)		. 131	00/1	<i>r</i> vy							
Analyte		Organophosphorus Pesticides (mg/kg)									
	Azinphos-methyl (Guthion)	Bromophos Ethyl	Chlorpyrifos (Chlorpyrifos Ethyl)	Diazinon (Dimpylate)	Dichlorvos	Dimethoate	Ethion	Fenitrothion	Malathion	Methidathion	Parathion-ethyl (Parathion)
Composite Number											
C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2
Limits of Reporting (LOR)	0.2	0.2	0.2	0.5	0.5	0.5	0.2	0.2	0.2	0.5	0.2
NATIONAL ENVIRONMENT PROTECTION AMENDMENT MEASURE (2013) Health-based Investigation Levels Residential B (HIL B) ^a Adjusted HIL ^b			340 113								

Notes

Residential with minimal opportunities for soil access; includes dwellings with fully and permanently paved yard space such as high-rise buildings and apartments.

b

a:

Adjusted HIL=HIL/3

TABLE M ASBESTOS TEST RESULTS DISCRETE SAMPLES (Ref No: 13138/1-AA)

	Analyte	
		ASBESTOS
Sample Location	Depth (m)	
BH1 BH4 BH7 BH10 BH13 BH16 BH17 BH21	0.05-0.2 0-0.3 0-0.3 0.15-0.45 0.3-0.6 2.1-2.4 0.2-0.5 0.2-0.5	No Asbestos Found No Asbestos Found
BH21	1.3-1.6	No Asbestos Found

APPENDIX A

NSW DEPARTMENT OF LANDS RECORDS

13138/1

Summary of Proprietors

Lot 1 DP818683

Year	Proprietor
1956 – to date	The Council of the Municipality of Canterbury
1956	The Cumberland County Council and The Council of the
	Municipality of Canterbury (?)
1908 – 1956	J.C. Hutton Proprietary Limited
1908	Edward Richard William Denham, produce merchant

Year	Leases
1990 - 2010	Canterbury Bowling and Sydney Petanque Club Limited

Advance Legal Searchers Pty Ltd hereby certifies that the information contained in this document has been provided electronically by the Registrar General in accordance with Section 96B(2) of the Real Property Act.

Information provided through Tri-Search an approved LPINSW Information Broker

LAND AND PROPERTY INFORMATION NEW SOUTH WALES - TITLE SEARCH

FOLIO: 1/818683

 SEARCH DATE
 TIME
 EDITION NO
 DATE

 ----- ---- ---- ----

 27/3/2014
 11:03 AM
 3
 21/8/2000

LAND

LOT 1 IN DEPOSITED PLAN 818683 AT CANTERBURY LOCAL GOVERNMENT AREA CANTERBURY PARISH OF PETERSHAM COUNTY OF CUMBERLAND TITLE DIAGRAM DP818683

FIRST SCHEDULE

THE COUNCIL OF THE MUNICIPALITY OF CANTERBURY

SECOND SCHEDULE (6 NOTIFICATIONS)

- 1 RESERVATIONS AND CONDITIONS IN THE CROWN GRANT(S)
- 2 QUALIFIED TITLE. CAUTION PURSUANT TO SECTION 28J OF THE REAL PROPERTY ACT, 1900. ENTERED 23/11/92 (BK2393 NO126)
- * 3 EASEMENT FOR ELECTRICITY PURPOSES AFFECTING THE PART OF THE LAND

ABOVE DESCRIBED SHOWN SO BURDENED IN THE TITLE DIAGRAM VIDE NOTIFICATION IN GOV. GAZ. DATED 23-6-67 FOLIO'S 2272 & 2273

Z944756 TRANSFER OF EASEMENT TO SYDNEY ELECTRICITY

- * 4 BK 2273 NO 112 EASEMENT FOR WATER SUPPLY MAIN 7.62 WIDE AND VARIABLE WIDTH AFFECTING THE PART OF THE LAND ABOVE DESCRIBED SHOWN SO BURDENED IN THE TITLE DIAGRAM
 - 5 DP818683 EASEMENT FOR SERVICES APPURTENANT TO THE LAND ABOVE DESCRIBED
 - 6 7035212 LEASE TO CANTERBURY BOWLING AND SYDNEY PETANQUE CLUB LIMITED EXPIRES: 19/3/2010.

NOTATIONS

NOTE: THE CERTIFICATE OF TITLE FOR THIS FOLIO OF THE REGISTER DOES NOT INCLUDE SECURITY FEATURES INCLUDED ON COMPUTERISED CERTIFICATES OF TITLE ISSUED FROM 4TH JANUARY, 2004. IT IS RECOMMENDED THAT STRINGENT PROCESSES ARE ADOPTED IN VERIFYING THE IDENTITY OF THE PERSON(S) CLAIMING A RIGHT TO DEAL WITH THE LAND COMPRISED IN THIS FOLIO.

UNREGISTERED DEALINGS: NIL

*** END OF SEARCH ***

13158/1

PRINTED ON 27/3/2014

*ANY ENTRIES PRECEDED BY AN ASTERISK DO NOT APPEAR ON THE CURRENT EDITION OF THE CERTIFICATE OF TITLE. WARNING: THE INFORMATION APPEARING

UNDER NOTATIONS HAS NOT BEEN FORMALLY RECORDED IN THE REGISTER.

11:10 /Pgs:ALL /Seq:1 of 2 2014

Report Generated 8:23:20 AM, 19 December, 2013 Copyright © Land and Property Information ABN: 84 104 377 806 This information is provided as a searching aid only. While every endeavour is made to ensure the current cadastral pattern is accurately reflected, the Registrar General cannot guarantee the information provided. For all ACTIVITY PRIOR to SEPT 2002 you must refer to the RGs Charting and Reference Maps.

Page 1 of 3
APPENDIX B

SECTION 149 (2& 5) PLANNING CERTIFICATE

Administration Centre, 137 Beamish Street, CAMPSIE N.S.W. 2194 DX: 3813 Campsie Telephone: (02) 9789 9300 Fax: (02) 9789 1542

Geotechnique Pty Ltd PO BOX 880 PENRITH NSW 2750

PLANNING CERTIFICATE

Section 149 of the Environmental Planning and Assessment Act, 1979.

Certificate No: 28890 19 March 2014

Land which Certificate is issued for:

Lot 1 DP 818683

15 Close Street, CANTERBURY NSW 2193

INFORMATION PROVIDED UNDER SECTION 149 (2) OF THE ENVIRONMENTAL PLANNING AND ASSESSMENT ACT, 1979.

Land which Certificate is issued for:

Lot 1 DP 818683

15 Close Street, CANTERBURY NSW 2193

PART 1: ENVIRONMENTAL PLANNING INSTRUMENTS

1.1 Principal Environmental Planning Instrument

Canterbury Local Environmental Plan 2012

Date effective from

1 January 2013

Land Use Zone

ZONE RE1 PUBLIC RECREATION

1. Permitted without consent

Environmental protection works

2. Permitted with consent

Boat launching ramps; Building identification signs; Business identification signs; Car parks; Child care centres; Community facilities; Environmental facilities; Flood mitigation works; Information and education facilities; Jetties; Kiosks; Markets; Recreation areas; Recreation facilities (indoor); Recreation facilities (major); Recreation facilities (outdoor); Research stations; Respite day care centres; Restaurants or cafes; Roads; Sewerage systems; Water recreation structures; Water supply systems

3. Prohibited

Any development not specified in item 1 or 2

1.2 State Environmental Planning Policies

Note:

The following information indicates those State Environmental Planning Policies (SEPP) which may apply to the subject land. A summary explanation of each SEPP can be sourced from the Department of Planning (DoP) website at www.planning.nsw.gov.au. The full wording of each SEPP can also be accessed via the DoP website.

State Environmental Planning Policies:

- No. 19 Bushland in Urban Areas
- No. 21 Caravan Parks
- No. 30 Intensive Agriculture
- No. 32 Urban Consolidation (Redevelopment of Urban Land)
- No. 33 Hazardous and Offensive Development
- No. 50 Canal Estates
- No. 55 Remediation of Land
- No. 64 Advertising and Signage
- No. 65 Design Quality of Residential Flat Development
- No. 71 Coastal Protection
- State Environmental Planning Policy (Housing for Seniors or People with a Disability) 2004
- State Environmental Planning Policy Building Sustainability Index: BASIX 2004
- State Environmental Planning Policy (Repeal of Concurrence and Referral Provisions) 2004.
- State Environmental Planning Policy (Major Projects) 2005
- State Environmental Planning Policy (Mining, Petroleum Production and Extractive Industries) 2007
- State Environmental Planning Policy (Temporary Structures and Places of Public Entertainment) 2007
- State Environmental Planning Policy (Infrastructure) 2007
- State Environmental Planning Policy (Repeal of Concurrence and Referral Provisions) 2008
- State Environmental Planning Policy (Exempt and Complying Development Codes) 2008

State Environmental Planning Policy (Affordable Rental Housing) 2009

Proposed State Environmental Planning Policies

State Environmental Planning Policy (Competition) 2010

1.3 <u>Proposed Environmental Planning Instruments (including any Planning Proposals) that are</u> or have been the subject of community consultation or on public exhibition under the Act Not applicable.

1.4 Development Control Plans.

Canterbury Development Control Plan 2012 Contains detailed design guidelines and development standards for development in Canterbury City.

1.5 <u>Contribution Plans.</u>

Council has in place a Development Contributions Plan prepared and adopted under the Environmental Planning and Assessment Act, 1979.

PART 2: RESTRICTIONS ON DEVELOPMENT

2.1 <u>Heritage</u>

Not applicable.

2.2 Coastal Protection

There is no notification that the subject property is affected by the provisions of Section 38 or 39 of the Coastal Protection Act, 1979.

2.3 Mine Subsidence

The subject land is not within a mine subsidence district within the meaning of Section 15 of the Mine Subsidence Compensation Act, 1961.

2.4 Road Widening and Road Realignment

Whether or not the land is affected by a road widening or road realignment proposal under Division 2 or Part 3 of the Roads Act 1993 or an environmental planning instrument;

The land is not affected by a road widening or road realignment proposal under Division 2 or Part 3 of the Roads Act 1993, or an environmental planning instrument.

Whether or not the land is affected by a road widening or road realignment proposal under any resolution of Council.

The land is not affected by a road widening or road realignment proposal under any resolution of Council.

2.5 Council and Other Public Authority Policies on Hazard Risk Restrictions

Whether or not the land is affected by a policy adopted by Council or adopted by any other public authority (and notified to the Council for the express purpose of its adoption by that authority being referred to) that restricts the development of the land because of the likelihood of:

Land Slip

The land is not affected by a policy restriction relating to landslip

Bushfire

The land is not bushfire prone land (as defined in the Act).

Tidal Inundation

The land is not affected by a policy restriction relating to tidal inundation

Subsidence

The land is not affected by a policy restriction relating to subsidence

Acid Sulfate Soils

The land is affected by the Acid Sulfate Soils Assessment Guidelines and Acid Sulfate Soils Planning Guidelines adopted by the Department of Planning and the Department of Environment and Conservation and notified to the Council that restricts the development of the land because of the likelihood of acid sulfate soils.

Unhealthy Building Land

The land is not affected by a policy restriction relating to Unhealthy Building Land.

Any Other Risk

Not applicable.

2.6 Flooding

Development on the land, or part of the land, for the purposes of dwelling houses, dual occupancies, multi dwelling housing or residential flat buildings (not including development for the purposes of group homes or seniors housing) is not subject to any flood related development controls.

Development on the land, or part of the land, for any other purpose is not subject to flood related development controls.

2.7 <u>Matters arising under the Contaminated Land Management Act, 1997.</u> Not applicable.

2.8 Land Reserved For Acquisition

There is no environmental planning instrument, or proposed environmental planning instrument, applying to the land that makes provision for the acquisition of the land (or any part thereof) by a public authority, as referred to in Section 27 of the Act.

2.9 Property Vegetation Plans

Not applicable

- 2.10 Orders under Trees (Disputes Between Neighbours) Act 2006 Not applicable
- 2.11 <u>Directions under Part 3A</u> Not applicable
- 2.12 <u>Site Compatibility Certificates and Conditions for Seniors Housing</u> Not applicable
- 2.13 <u>Site Compatibility Certificates for Infrastructure</u> Not applicable
- 2.14 <u>Site Compatibility Certificates and Conditions for Affordable Rental Housing</u> Not applicable
- 2.15 <u>Certain Information Relating to Beaches and Coasts</u> Not applicable
- 2.16 <u>Annual charges under Local Government Act 1993 for coastal protection services that relate</u> to existing coastal protection works Not applicable
- 2.17 <u>Biodiversity Certified Land</u> Not applicable
- 2.18 <u>Paper Subdivision Information</u> Not applicable
- 2.19 <u>Site Verification Certificates</u> Not applicable

2.20 Complying Development

Whether or not the land is land on which complying development may be carried out under each of the Codes for complying development because of the provisions of clauses 1.17A (c) and (d) and 1.19 of State Environmental Planning Policy (Exempt and Complying Development Codes) 2008 and, if no complying development may be carried out on that land under that Policy, the reasons why complying development may not be carried out on that land.

General Housing Code (if in a residential zone)	No.
The land is excluded for the following reason(s):	Land Reserved for a Public Purpose
Housing Alterations Code	Yes
General Development Code	Yes
Commercial and Industrial (New Buildings and Additions) Code)	No.
The land is excluded for the following reason(s):	Land Reserved for a Public Purpose
Commercial and Industrial Alterations Code	Yes
Demolition Code	Yes
Subdivision Code	Yes
Fire Safety Code	Yes

Important Disclaimer: This clause of the Certificate only contains information in respect of that required by clause 3 of Schedule 4 of the Environmental Planning and Assessment Regulation 2000, in relation to Complying Development under State Environmental Planning Policy (Exempt and Complying Development Codes) 2008. Other provisions contained in the SEPP, including but not limited to, minimum allotment size requirements, specified development standards or any other general exclusions, may preclude Complying Development under the SEPP from being able to be carried out. You will need to refer to the SEPP for complete details. It is your responsibility to ensure that you comply with all other general requirements of the SEPP. Failure to comply with these provisions may mean that any Complying Development Certificate issued under the provisions of the SEPP is invalid.

PART 3

INFORMATION PROVIDED UNDER SECTION 149 (5) OF THE ENVIRONMENTAL PLANNING AND ASSESSMENT ACT, 1979.

Note: When information pursuant to Section 149(5) is requested the Council is under no obligation to furnish any of the information supplied herein pursuant to that Section. Council draws your attention to Section 149(6), which states that a Council shall not incur any liability in respect of any advice provided in good faith pursuant to sub-section (5). The absence of any reference to any matter affecting the land shall not imply that the land is not affected by any matter not referred to in this Certificate.

3.1 Amending Local Environmental Plans

Site specific and, where relevant, general amendments to the principal planning instrument are identified below:

Not applicable

3.2 Tree Preservation Order

A tree preservation order applies to the whole of the City of Canterbury.

3.3 Council Policy on Contaminated Land

On the 10 June 1999 Council adopted a policy on contaminated land. This policy will restrict development of land:

- a) which is affected by contamination;
- a) which has been used for certain purposes;
- b) in respect of which there is not sufficient information about contamination;
- c) which is proposed to be used for certain purposes;
- d) in other circumstances contained in the policy.

3.4 General Advice Regarding Use of Property

Persons considering commencing a use of or purchasing a property are advised to seek confirmation that the current, or intended, use (as the case may be) has been approved by Council, or does not require Council approval. It is pointed out that the question of "existing use rights" within the meaning of the Environmental Planning and Assessment Act, 1979, is a complex matter, and that the commencement of a use without Council approval (where required) is unlawful and may be subject to enforcement action.

3.5 Other Matters

Not applicable.

1.110

per JIM MONTAGUE PSM GENERAL MANAGER APPENDIX C

NSW ENVIRONMENT AND HERITAGE (OEH) RECORDS

EPA

You are here: <u>Home</u> > <u>Contaminated land</u> > Record of notices

Contaminated land - record of notices

Record under section 58 of the Contaminated Land Management Act 1997

This record is maintained by OEH in accordance with Part 5 of the <u>Contaminated Land</u> <u>Management Act 1997</u> (CLM Act).

The record **does** provide

- ✓ a record of written notices issued by OEH under the CLM Act, including preliminary investigation orders.
- the names of the sites, owners or occupiers at the time of OEH action in relation to the site
- copies of site audit statements (SAS) provided to OEH under section 52 of the CLM Act and relating to significantly contaminated land.
- The record does not provide
 a record of all contaminated land in NSW. See frequently asked questions
 a list of notifications of contamination that OEH receives.
 the names of the sites, owners or occupiers if it changes after OEH action in relation to the site.
 some personal information.

... more about the CLM record of notices

From 1 July 2009 there were changes to the terminology of certain OEH actions under the CLM Act. See the <u>list of these changes</u>.

The record includes notices issued under sections 35 and 36 of the Environmentally Hazardous Chemicals Act 1985. These sections have been repealed. These notices are treated by the CLM Act as management orders.

Before using the record of notices see the <u>Disclaimer and terms of use</u>.

As at Tuesday, 8 April 2014 there are 1128 notices in the record relating to 352 sites.

Show me the entire record or Search the record

8 April 2014

You are here: <u>Home</u> > <u>Contaminated land</u> > <u>Record of notices</u>

Search results

Your search for:LGA: Canterbury City Council

		relating to (5 sites.
		Searc	h Again
		Refin	e Search
Suburb	Address	Site Name	Notices related to this site
Campsie	403 Canterbury Road	<u>Cheapa Petrol, Campsie</u>	1 current
Campsie	60 Charlotte Street	Sunbeam Factory	3 former
Canterbury	13-19 Canterbury Road	Metro Petroleum Service Station	2 current
Earlwood	Lot 3 Jackson Place	<u>Jackson Place, Earlwood</u>	2 current
Hurlstone Park	610 - 618 New Canterbury Road	<u>Speedway Fuels</u>	1 current
Marrickville	Thornley Street/Wanstead Avenue	<u>Sewer Aqueduct - Cooks River</u>	1 former

Page 1 of 1

8 April 2014

Health

Environment,

Matched 10 notices

Connect	Feedback	Contact	Government	About
Y	Web support Public consultation	Contact us Offices Report pollution	NSW Government jobs.nsw	Accessibility Disclaimer Privacy Copyright

You are here: <u>Home</u> > <u>Environment protection licences</u> > <u>POEO Public</u> <u>Register</u> > <u>Search for licences, applications and notices</u>

Search results

Your search for: General Search with the following criteria

Suburb - CANTERBURY

returned 6 results

Export to e	excel	1 of 1 Pages			Search Again
<u>Number</u>	<u>Name</u>	Location	<u>Type</u>	<u>Status</u>	Issued date
<u>10544</u>	ALL CHROME SHOP PTY LTD	390 CANTERBURY ROAD, CANTERBURY, NSW 2193	POEO licence	Surrendere	ed23 Feb 2000
<u>1001762</u>	ALL CHROME SHOP PTY LTD	390 CANTERBURY ROAD, CANTERBURY, NSW 2193	s.58 Licence Variation	Issued	18 Sep 2000
<u>1014102</u>	ALL CHROME SHOP PTY LTD	390 CANTERBURY ROAD, CANTERBURY, NSW 2193	s.58 Licence Variation	Issued	21 Jan 2002
<u>1035249</u>	ALL CHROME SHOP PTY LTD	390 CANTERBURY ROAD, CANTERBURY, NSW 2193	s.58 Licence Variation	Issued	10 Mar 2004
<u>1057322</u>	ALL CHROME SHOP PTY LTD	390 CANTERBURY ROAD, CANTERBURY, NSW 2193	s.58 Licence Variation	Issued	15 Mar 2006
<u>789</u>	CANTERBURY CITY COUNCIL	PHILLIPS AVE, CANTERBURY, NSW 2193	POEO licence	Surrendere	ed26 Apr 2000

08 April 2014

vironment, Healthy Community

APPENDIX D

WORKCOVER NSW RECORDS

WorkCover NSW 92-100 Donnison Street, Gosford, NSW 2250 Locked Bag 2906, Lisarow, NSW 2252 T 02 4321 5000 F 02 4325 4145 WorkCover Assistance Service 13 10 50 DX 731 Sydney workcover.nsw.gov.au

Our Ref: D14/033717 Your Ref: Frances Kuipers

18 March 2014

Attention: Frances Kuipers Geotechnique Pty Ltd PO BOX 880 Penrith NSW 2750

ECENVE BY:

Dear Ms Kuipers,

RE SITE: 15 Close St Canterbury NSW

I refer to your site search request received by WorkCover NSW on 13 March 2014 requesting information on licences to keep dangerous goods for the above site.

A search of the Stored Chemical Information Database (SCID) and the microfiche records held by WorkCover NSW has not located any records pertaining to the above mentioned premises.

If you have any further queries please contact the Dangerous Goods Licensing Team on (02) 4321 5500.

Yours Sincerely

Brent Jones Senior Licensing Officer Dangerous Goods Team

APPENDIX E

TABLE 1 – BOREHOLE AND SAMPLE LOGS

Proposed Redevelopment

Location 15 Close Street Canterbury

Job No

13138/1

Refer to Drawing No 13138/1-AA1

Logged & Sampled by

LY

Page 1 of 5

TABLE 1

Borehole (BH)	Depth (m)	Sample Depth (m)	Date	Time	Material Description	Remarks*
1	0 - 0.05	No Sample (NS)	18.3.14		Bitumen	
	0.65 - 0.2	0.05 - 0.2			FILL: Gravelly Sand, medium grained, grey, with inclusions of clay	
	0.2 - 1.5	0.25 - 0.35			(CI) Sandy CLAY, medium plasticity, dark grey	
	1.5 - 4.0	NS			(CI) Sandy CLAY, medium plasticity, brown and grey with inclusions of ironstone gravel	
2	0 - 0.05	NS	"		Bitumen	
	0.05 - 0.1	NS			ROADBASE	
	0.1 - 0.4	0.1 - 0.4			FILL: Gravelly Sand, medium grained, grey with inclusions of clay	
	0.4 - 0.9	0.45 - 0.55			(CI) Sandy CLAY, medium plasticity, dark grey	
3	0 - 0.5	0 - 0.3	"		FILL: Sandy Gravel, dark grey and black with inclusions of ash material	
	0.5 - 1.0	0.55 - 0.65			(CI) Sandy CLAY, medium plasticity, dark grey	
4	0 - 0.5	0 - 0.3	"		FILL: Sandy Gravel, dark grey and black with inclusions of ash material	
	0.5 - 0.8	0.55 - 0.65			(CI) Sandy CLAY, medium plasticity, brown and grey with inclusions of ironstone gravel	
	0.8	NS			SANDSTONE	
5	0 - 0.3	0 - 0.15	**		TOPSOIL: Silty Sand, medium grained, grey with inclusions of root fibre and clay	
	0.3	NS			SANDSTONE	
6	0 - 0.4	0 - 0.3	"		FILL: Sandy Gravel, dark grey and black with inclusions of ash material	
	0.4 - 0.7	0.45 - 0.55			(CI) Sandy CLAY, medium plasticity, brown and grey with inclusions of ironstone gravel	
7	0 - 0.5	0 - 0.3	и		FILL: Sandy Gravel, dark grey and black, with inclusions of ash material	
	0.5 - 1.0	0.55 - 0.65			(CI) Sandy CLAY, medium plasticity, dark grey	

Proposed Redevelopment

Job No

13138/1

Location 15 Close Street Canterbury

Logged & Sampled by

Refer to Drawing No

LY

13138/1-AA1

TABLE 1

1	1	1		I	F	Page 2 of
Borehole (BH)	Depth (m)	Sample Depth (m)	Date	Time	Material Description	Remarks*
8	0 - 0.05	NS	18.3.14		Bitumen	
	0.05 - 0.2	0.05 - 0.2			FILL: Gravelly Sand, medium grained, grey with inclusions of clay	
	0.2 - 0.7	0.25 - 0.35			(SP) Clayey SAND, medium grained, grey	
9	0 - 0.05	NS	"		Bitumen	
	0.05 - 0.2	0.05 - 0.2			FILL: Gravelly Sand, medium grained, grey with inclusions of clay	
	0.2 - 0.7	0.25 - 0.35			(CI) Sandy CLAY, medium plasticity, dark grey	
10	0 - 0.15	0 - 0.15	"		TOPSOIL: Silty Sand, medium grained, grey with inclusions of root fibres and clay	
	0.15 - 0.65	0.15 - 0.45			FILL: Sandy Gravel, dark grey and black with inclusions of ash material	
	0.65 - 1.15	0.7 - 0.8			(CI) Sandy CLAY, medium plasticity, dark grey	
11	0 - 0.2	0 - 0.15	"		TOPSOIL: Silty Sand, medium grained, grey with inclusions of root fibres and clay	
	0.2 - 0.6	0.2 - 0.5			FILL: Sandy Gravel, dark grey and black with inclusions of ash material	
	0.6 - 1.1	0.65 - 0.75			(CI) Sandy CLAY, medium plasticity, brown and grey with inclusions of ironstone gravel	
12	0 - 0.2	0 - 0.15	"		TOPSOIL: Silty Sand, medium grained, grey with inclusions of root fibres and clay	
	0.2 - 0.5	NS			(CI) Sandy CLAY, medium plasticity, brown and grey with inclusions of ironstone gravel	
	0.5	NS			SANDSTONE	

Location

Proposed Redevelopment

15 Close Street Canterbury

Job No

13138/1

13138/1-AA1

Refer to Drawing No

LY

Logged & Sampled by

TABLE 1

Denth					
Depth (m)	Sample Depth (m)	Date	Time	Material Description	Remarks*
0 - 0.3	0 - 0.15	18.3.14		TOPSOIL: Silty Sand, medium grained, grey with inclusions of root fibres and clay	
0.3 - 0.9	0.3 - 0.6			FILL: Sandy Gravel, dark grey and black with inclusions of ash material	
0.9 - 1.4	0.95 - 1.15			(CI) Sandy CLAY, medium plasticity, brown and grey with inclusions of	
0 - 0.2	0 - 0.15	u		ironstone gravel TOPSOIL: Silty Sand, medium grained, grey with inclusions of root fibres and clay	
0.2 - 0.7	0.2 - 0.5			FILL: Sandy Gravel, dark grey and black, with inclusions of ash material	
0.7 - 1.2	0.75 - 0.85			(CI) Sandy CLAY, medium plasticity, brown and grey, with inclusions of ironstone gravel	
0 - 0.2	0 - 0.15	и		TOPSOIL: Silty Sand, medium grained, grey with inclusions of root fibres and clay	
0.2 - 1.2	0.2 - 0.5			FILL: Sandy Gravel, dark grey and black with inclusion of ash material	
	0.9 - 1.2			FILL: Sandy Gravel dark grey and black with inclusions of ash material	
1.2 - 1.7	1.25 - 1.35			(CI) Sandy CLAY, medium plasticity, brown and grey, with inclusions of ironstone gravel	
0 - 0.1	0 - 0.1	и		TOPSOIL: Silty Sand, medium grained, grey with inclusions of root fibres and clay	
0.1 - 3.4	0.1 - 0.4			FILL: Silty Clay, medium plasticity, grey with inclusions of shale and sandstone fragments and roots	
	1.1 - 1.4			FILL: Silty Clay, medium plasticity, grey with inclusions of shale and sandstone fragments and roots	
	2.1 - 2.4			FILL: Silty Clay, medium plasticity, grey with inclusions of shale and sandstone fragments and roots	
	3.1 - 3.4			FILL: Silty Clay, medium plasticity, grey with inclusions of shale and sandstone fragments and roots	
3.4 - 3.8	3.45 - 3.55			(CI) Sandy CLAY, medium plasticity, dark grey	
	(m) 0 - 0.3 0.3 - 0.9 0.9 - 1.4 0 - 0.2 0.2 - 0.7 0.7 - 1.2 0 - 0.2 0.2 - 1.2 1.2 - 1.7 0 - 0.1 0.1 - 3.4 3.4 - 3.8	(m) Depth (m) 0 - 0.3 0 - 0.15 0.3 - 0.9 0.3 - 0.6 0.9 - 1.4 0.95 - 1.15 0 - 0.2 0 - 0.15 0.2 - 0.7 0.2 - 0.5 0.7 - 1.2 0.75 - 0.85 0.2 - 1.2 0.2 - 0.5 0.2 - 1.2 0.2 - 0.5 0.2 - 1.2 0.9 - 1.2 1.2 - 1.7 1.25 - 1.35 0 - 0.1 0 - 0.1 0.1 - 3.4 0.1 - 0.4 1.1 - 1.4 2.1 - 2.4 3.4 - 3.8 3.45 - 3.55	m)Depth (m)Date $0 - 0.3$ $0 - 0.15$ $18.3.14$ $0.3 - 0.9$ $0.3 - 0.6$ $$ $0.9 - 1.4$ $0.95 - 1.15$ $$ $0 - 0.2$ $0 - 0.15$ $$ $0.2 - 0.7$ $0.2 - 0.5$ $$ $0.7 - 1.2$ $0.75 - 0.85$ $$ 00.2 $0 - 0.15$ $$ $0.2 - 1.2$ $0.2 - 0.5$ $$ $0.2 - 1.2$ $0.2 - 0.5$ $$ $0.2 - 1.2$ $0.2 - 0.5$ $$ $0.2 - 1.2$ $0.2 - 0.5$ $$ $0.1 - 0.1$ $0 - 0.1$ $$ $0 - 0.1$ $0 - 0.1$ $$ $0.1 - 3.4$ $0.1 - 0.4$ $$ $1.1 - 1.4$ $2.1 - 2.4$ $$ $3.4 - 3.8$ $3.45 - 3.55$ $$	(m)Depth (m)DateHille0-0.30-0.1518.3.140.3-0.90.3-0.6	(m)Depth (m)DateIniteMaterial Description0 - 0.30 - 0.1518.3.14TOPSOIL: Silty Sand, medium grained, grey with inclusions of root fibres and clay0.3 - 0.90.3 - 0.6FILL: Sandy Gravel, dark grey and black with inclusions of ash material0.8 - 1.40.95 - 1.15(C) Sandy CLAY, medium plasticity, brown and grey with inclusions of ironstone gravel0 - 0.20 - 0.15"0.2 - 0.70.2 - 0.5FILL: Sandy Gravel, dark grey and black, with inclusions of store fibres and clay0.7 - 1.20.75 - 0.85(Ci) Sandy CLAY, medium plasticity, brown and grey, with inclusions of ironstone gravel0 - 0.20 - 0.15"0.2 - 1.20.2 - 0.5(Ci) Sandy CLAY, medium plasticity, brown and grey, with inclusions of ironstone gravel0.2 - 1.20.2 - 0.5"0.3 - 1.20.2 - 0.5FILL: Sandy Gravel, dark grey and black, with inclusions of root fibres and clay0.2 - 1.20.2 - 0.5"0.3 - 1.4(Ci) Sandy CLAY, medium plasticity, brown and grey, with inclusions of ash material1.2 - 1.71.25 - 1.35[Ci) Sandy CLAY, medium plasticity, brown and grey, with inclusions of ironstone gravel0 - 0.10 - 0.1"0.1 - 3.40.1 - 0.41.1 - 1.4FILL: Silty Clay, medium plasticity, grey with inclusions of shale and sandstone fragments and roots3.1 - 3.43.45 - 3.553.4 - 3.83.45 - 3.55

Proposed Redevelopment

Location 15 Close Street Canterbury

Job No

13138/1

Refer to Drawing No 13138/1-AA1

Logged & Sampled by

LY

TABLE 1

Borehole	Depth	Sample				
(BH)	(m)	Depth (m)	Date	Time	Material Description	Remarks*
17	0 - 0.2	0 - 0.15	18.3.14		TOPSOIL: Silty Sand, medium grained, grey with inclusions of root fibres and clay	
	0.2 - 1.2	0.2 - 0.5			FILL: Gravelly Sand, medium grained, grey with inclusions of clay	
		0.7 - 1.0			FILL: Gravelly Sand, medium grained, grey with inclusions of clay	
	1.2 - 1.5	1.25 - 1.35			(CI) Sandy CLAY, medium plasticity, dark grey	
18	0 - 0.2	0 - 0.15	"		TOPSOIL: Silty Sand, medium grained, grey with inclusions of root fibres and clay	
	0.2 - 3.0	NS			(CI) Sandy CLAY, medium plasticity, brown and grey with inclusions of ironstone gravel	
	3.0	NS			Refusal	
19	0 - 0.2	0 - 0.15	"		TOPSOIL: Silty Sand, medium grained, grey with inclusions of root fibres and clay	
	0.2 - 0.7	NS			(CI) Sandy CLAY, medium plasticity, brown and grey, with inclusions of ironstone gravel	
20	0 - 0.2	0 - 0.15	u		TOPSOIL: Silty Sand, medium grained, grey with inclusions of root fibres and clay	
	0.2 - 0.7	NS			(SP) Clayey SAND, medium grained, grey	
l						
l						

Proposed Redevelopment

Location 15 Close Street Canterbury

Job No

Refer to Drawing No

13138/1

13138/1-AA1

Logged & Sampled by L

LY

TABLE 1

Borebole	Donth	Samplo				Page 5 0
(BH)	(m)	Depth (m)	Date	Time	Material Description	Remarks*
21	0 - 0.2	0 - 0.15	18.3.14		TOPSOIL; Silty Sand, medium grained, grey with inclusions of root fibres and clay	
	0.2 - 0.8	0.2 - 0.5			FILL: Sand, fine grained grey	
	0.8 - 1.85	0.8 - 1.1			FILL: Silty Clay, medium plasticity, grey with inclusions of shale and sandstone fragments and roots	
		1.3 - 1.6			FILL: Silty Clay, medium plasticity, grey with inclusions of shale and sandstone fragments and roots	
		1.75 - 1.85			FILL: Silty Clay, medium plasticity, grey with inclusions of shale and sandstone fragments and roots	
	1.85 - 3.8	NS			(CI) Sandy CLAY, medium plasticity, dark grey	

APPENDIX F

GROUNDWATER MAPS AND BORE DATA

13138/1 Groundwater Map

Map created with NSW Natural Resource Atlas - http://www.nratlas.nsw.gov.au

Tuesday, April 08, 2014

0

Leaend

Symbol	Layer	Custodian
•	Cities and large towns renderImage: Cannot build image from features	
Cowra	Populated places renderImage: Cannot build image from features	
•	Towns	
•	Groundwater Bores	
	Catchment Management Authority boundaries	
\sim	Major rivers	

Topographic base map

Copyright © 2014 New South Wales Government. Map has been compiled from various sources and may contain errors or omissions. No representation is made as to its accuracy or suitability.

Print Report

Groundwater Works Summary

For information on the meaning of fields please see <u>Glossary</u> Document Generated on Tuesday, April 8, 2014

Works Details Site Details Form A Licensed Construction Water Bearing Zones Drillers Log

Work Requested -- GW102402

Works Details (top)

GROUNDWATER NUMBER	GW102402
LIC-NUM	10WA108367
AUTHORISED-PURPOSES	DOMESTIC
INTENDED-PURPOSES	
WORK-TYPE	Bore
WORK-STATUS	(Unknown)
CONSTRUCTION-METHOD	
OWNER-TYPE	
COMMENCE-DATE	
COMPLETION-DATE	1996-01-01
FINAL-DEPTH (metres)	90.00
DRILLED-DEPTH (metres)	
CONTRACTOR-NAME	
DRILLER-NAME	
PROPERTY	SILVA
GWMA	-
GW-ZONE	-
STANDING-WATER-LEVEL	
SALINITY	
YIELD	

Site Details (top)

REGION 10 - SYDNEY SOUTH COAST **RIVER-BASIN AREA-DISTRICT CMA-MAP GRID-ZONE** SCALE **ELEVATION ELEVATION-SOURCE** NORTHING 6246390.00 EASTING 326938.00 33 54' 31" LATITUDE 151 7' 41" LONGITUDE **GS-MAP**

AMG-ZONE56COORD-SOURCEGIS - Geographic Information SystemREMARK

Form-A (top)

no details

Licensed (top)

COUNTY	CUMBERLAND
PARISH	PETERSHAM
PORTION-LOT-DP	26 5924

Construction (top)

Negative depths indicate Above Ground Level;H-Hole;P-Pipe;OD-Outside Diameter; ID-Inside Diameter;C-Cemented;SL-Slot Length;A-Aperture;GS-Grain Size;Q-Quantity

HOLE- NO	PIPE- NO	COMPONENT- CODE	COMPONENT- TYPE	DEPTH- FROM (metres)	DEPTH- TO (metres)	OD (mm)	ID (mm)	INTERVAL	DETAIL
1	1	Casing	(Unknown)	0.00	0.00	125			

Water Bearing Zones (top)

no details

Drillers Log (top)

no details

Warning To Clients: This raw data has been supplied to the Department of Infrastructure, Planning and Natural Resources (DIPNR) by drillers, licensees and other sources. The DIPNR does not verify the accuracy of this data. The data is presented for use by you at your own risk. You should consider verifying this data before relying on it. Professional hydrogeological advice should be sought in interpreting and using this data.

Print Report

Groundwater Works Summary

For information on the meaning of fields please see <u>Glossary</u> Document Generated on Tuesday, April 8, 2014

Works Details Site Details Form A Licensed Construction Water Bearing Zones Drillers Log

Work Requested -- GW105215

Works Details (top)

GROUNDWATER NUMBER	GW105215
LIC-NUM	10WA108527
AUTHORISED-PURPOSES	DOMESTIC
INTENDED-PURPOSES	DOMESTIC
WORK-TYPE	Bore
WORK-STATUS	Supply Obtained
CONSTRUCTION-METHOD	
OWNER-TYPE	Private
COMMENCE-DATE	
COMPLETION-DATE	2003-06-05
FINAL-DEPTH (metres)	15.00
DRILLED-DEPTH (metres)	
CONTRACTOR-NAME	
DRILLER-NAME	
PROPERTY	N/A
GWMA	-
GW-ZONE	-
STANDING-WATER-LEVEL	
SALINITY	
YIELD	

Site Details (top)

REGION	10 - SYDNEY SOUTH COAST
RIVER-BASIN	213 - SYDNEY COAST - GEORGES RIVER
AREA-DISTRICT	
CMA-MAP	9130-3S
GRID-ZONE	56/1
SCALE	1:25,000
ELEVATION	
ELEVATION-SOURCE	(Unknown)
NORTHING	6246456.00
EASTING	325448.00
LATITUDE	33 54' 28"
LONGITUDE	151 6' 43"
GS-MAP	

AMG-ZONE 56 COORD-SOURCE REMARK

Form-A (top)

COUNTY	CUMBERLAND
PARISH	ST GEORGE
PORTION-LOT-DP	LT 7 DP 12648

Licensed (top)

COUNTY CUMBERLAND PARISH ST GEORGE PORTION-LOT-DP 7 12648

Construction (top)

Negative depths indicate Above Ground Level;H-Hole;P-Pipe;OD-Outside Diameter; ID-Inside Diameter;C-Cemented;SL-Slot Length;A-Aperture;GS-Grain Size;Q-Quantity

HOLE- NO	PIPE- NO	COMPONENT- CODE	COMPONENT- TYPE	DEPTH- FROM (metres)	DEPTH- TO (metres)	OD (mm)	ID (mm)	INTERVAL	DETAIL
1		Hole	Hole	0.00	15.00	175			Hand Dug
1		Hole	Hole	0.00	15.00	175			Hand Drilled
1	1	Casing	Lining	0.00	0.00				

Water Bearing Zones (top)

no details

Drillers Log (top)

no details

Warning To Clients: This raw data has been supplied to the Department of Infrastructure, Planning and Natural Resources (DIPNR) by drillers, licensees and other sources. The DIPNR does not verify the accuracy of this data. The data is presented for use by you at your own risk. You should consider verifying this data before relying on it. Professional hydrogeological advice should be sought in interpreting and using this data.

Print Report

Groundwater Works Summary

For information on the meaning of fields please see <u>Glossary</u> Document Generated on Tuesday, April 8, 2014

Works Details Site Details Form A Licensed Construction Water Bearing Zones Drillers Log

Work Requested -- GW305694

Works Details (top)

GROUNDWATER NUMBER	GW305694
LIC-NUM	30BL181476
AUTHORISED-PURPOSES	DOMESTIC
INTENDED-PURPOSES	DOMESTIC
WORK-TYPE	Spear
WORK-STATUS	New Bore
CONSTRUCTION-METHOD	
OWNER-TYPE	Private
COMMENCE-DATE	
COMPLETION-DATE	2003-02-20
FINAL-DEPTH (metres)	5.00
DRILLED-DEPTH (metres)	
CONTRACTOR-NAME	
DRILLER-NAME	
PROPERTY	MACKNEY'S
GWMA	-
GW-ZONE	-
STANDING-WATER-LEVEL	
SALINITY	
YIELD	0.30

Site Details (top)

REGION	30 - NORTH COAST
RIVER-BASIN	
AREA-DISTRICT	
CMA-MAP	
GRID-ZONE	
SCALE	
ELEVATION	
ELEVATION-SOURCE	
NORTHING	6244811.00
EASTING	326438.00
LATITUDE	33 55' 22"
LONGITUDE	151 7' 21"
GS-MAP	

AMG-ZONE56COORD-SOURCEMap InterpretationREMARK

Form-A (top)

COUNTY	CUMBERLAND
PARISH	ST GEORGE
PORTION-LOT-DP	3//12541

Licensed (top)

COUNTY CUMBERLAND PARISH ST GEORGE PORTION-LOT-DP 3 12541

Water Bearing Zones (top)

no details

Drillers Log (top)

no details

Warning To Clients: This raw data has been supplied to the Department of Infrastructure, Planning and Natural Resources (DIPNR) by drillers, licensees and other sources. The DIPNR does not verify the accuracy of this data. The data is presented for use by you at your own risk. You should consider verifying this data before relying on it. Professional hydrogeological advice should be sought in interpreting and using this data.

APPENDIX G

PID CALIBRATION SHEET

PID CALIBRATION

CLIENT PROJECT ADDRESS PID MODEL SERIAL NO	JBA Urban De Proposed Red 15 Close Stree PID MODEL: SERIAL NO:	evelopment levelopment et, Canterb PGM – 110 – 0	t Services nt bury 7600 MINIRAE 20 05380	JOB NO DATE CHECKED I 00 CALIBRATE	1; 18 3Y L` 5D BY L`	3138/1 8/03/2014 7 7
This performa	ance of this PID I	has been	checked and calib	rated as follows:		
	Charged*					
	Calibrate 0).0ppm		Reading:	0	opm
	1	00ppm	Isobutylene	Reading:	100	_ppm
Gi	as Bottle Numb	er 31	Lot No	934758		
Signed & App	roved	2016 21/		Date:	18/03/20	14

APPENDIX H

SGS ENVIRONMENTAL SERVICES ANALYTICAL REPORTS AND ENVIROLAB SERVICES CERTIFICATE OF ANALYSIS

ANALYTICAL REPORT

CLIENT DETAILS		LABORATORY DE	TAILS	
Contact Client Address	John Xu Geotechnique P.O. Box 880 PENRITH NSW 2751	Manager Laboratory Address	Huong Crawford SGS Alexandria Environmental Unit 16, 33 Maddox St Alexandria NSW 2015	
Telephone Facsimile Email	02 4722 2700 02 4722 6161 john.xu@geotech.com.au	Telephone Facsimile Email	+61 2 8594 0400 +61 2 8594 0499 au.environmental.sydney@sgs.com	
Project Order Number Samples Date Received	13138-1 - Canterbury (Not specified) 57 19/3/2014	SGS Reference Report Number Date Reported	SE126027 R0 0000078896 27/3/2014	

COMMENTS

Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562(4354).

No respirable fibres detected in all samples using trace analysis technique.

Asbestos analysed by Approved Identifier Yusuf Kuthpudin.

SIGNATORIES

Phonis

Deanne Norris Organic Chemist

Kamrul Ahsan Senior Chemist

Dong Liang Metals/Inorganics Team Leader

kmln

Ly Kim Ha Organic Section Head

lung

Huong Crawford Production Manager

S. Ravender.

Ravee Sivasubramaniam Asbestos Analyst

SGS Australia Pty Ltd ABN 44 000 964 278

Environmental Services

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australia t +61 2 8594 Australia

t +61 2 8594 0400 f +61 2 8594 0499

www.au.sgs.com

ANALYTICAL RESULTS

SE126027 R0

VOC's in Soil [AN433/AN434]

			BUI 0 05 0 2	BU4.0.0.2	BUZ 0 0 2		BU42.0.2.0.C	DU46 2 4 2 4
			BH1 0.05-0.2	БП4 0-0.3	БП/ 0-0.3	BH10 0.15-0.45	BH13 0.3-0.6	БП10 2.1-2.4
			SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
			18/3/2014	18/3/2014	18/3/2014	18/3/2014	18/3/2014	18/3/2014
PARAMETER	UOM	LOR	SE126027.001	SE126027.005	SE126027.009	SE126027.014	SE126027.019	SE126027.028
Benzene	mg/kg	0.10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Toluene	mg/kg	0.10	<0.1	0.2	0.2	0.1	<0.1	<0.1
Ethylbenzene	mg/kg	0.10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
m/p-xylene	mg/kg	0.20	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o-xylene	mg/kg	0.10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Naphthalene	mg/kg	0.10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total Xylenes*	mg/kg	0.30	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Total BTEX*	mg/kg	0.60	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6

			BH17 0.2-0.5	BH21 0.2-0.5	BH21 1.3-1.6	Х3	Tripspike TS1
			SOIL	SOIL	SOIL	SOIL	SAND
			18/3/2014	18/3/2014	18/3/2014	18/3/2014	18/3/2014
PARAMETER	UOM	LOR	SE126027.032	SE126027.036	SE126027.038	SE126027.042	SE126027.044
Benzene	mg/kg	0.10	<0.1	<0.1	<0.1	<0.1	[74%]
Toluene	mg/kg	0.10	<0.1	<0.1	<0.1	<0.1	[82%]
Ethylbenzene	mg/kg	0.10	<0.1	<0.1	<0.1	<0.1	[77%]
m/p-xylene	mg/kg	0.20	<0.2	<0.2	<0.2	<0.2	[82%]
o-xylene	mg/kg	0.10	<0.1	<0.1	<0.1	<0.1	[77%]
Naphthalene	mg/kg	0.10	<0.1	<0.1	<0.1	<0.1	<0.1
Total Xylenes*	mg/kg	0.30	<0.3	<0.3	<0.3	<0.3	-
Total BTEX*	mg/kg	0.60	<0.6	<0.6	<0.6	<0.6	-

SE126027 R0

Volatile Petroleum Hydrocarbons in Soil [AN433/AN434/AN410]

			BH1 0.05-0.2	BH4 0-0.3	BH7 0-0.3	BH10 0.15-0.45	BH13 0.3-0.6	BH16 2.1-2.4
			SOIL 18/3/2014	SOIL 18/3/2014	SOIL 18/3/2014	SOIL 18/3/2014	SOIL 18/3/2014	SOIL 18/3/2014
PARAMETER	UOM	LOR	SE126027.001	SE126027.005	SE126027.009	SE126027.014	SE126027.019	SE126027.028
Benzene (F0)	mg/kg	0.10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
TRH C6-C9	mg/kg	20	<20	<20	<20	<20	<20	<20
TRH C6-C10	mg/kg	25.0	<25	<25	<25	<25	<25	<25
TRH C6-C10 minus BTEX (F1)	mg/kg	25.0	<25	<25	<25	<25	<25	<25

			BH17 0.2-0.5	BH21 0.2-0.5	BH21 1.3-1.6	Х3
PARAMETER	UOM	LOR	SOIL 18/3/2014 SE126027.032	SOIL 18/3/2014 SE126027.036	SOIL 18/3/2014 SE126027.038	SOIL 18/3/2014 SE126027.042
Benzene (F0)	mg/kg	0.10	<0.1	<0.1	<0.1	<0.1
TRH C6-C9	mg/kg	20	<20	<20	<20	<20
TRH C6-C10	mg/kg	25.0	<25	<25	<25	<25
TRH C6-C10 minus BTEX (F1)	mg/kg	25.0	<25	<25	<25	<25

SE126027 R0

TRH (Total Recoverable Hydrocarbons) in Soil [AN403]

			BH1 0.05-0.2	BH4 0-0.3	BH7 0-0.3	BH10 0.15-0.45	BH13 0.3-0.6	BH16 2.1-2.4
PARAMETER	UOM	LOR	SOIL 18/3/2014 SE126027.001	SOIL 18/3/2014 SE126027.005	SOIL 18/3/2014 SE126027.009	SOIL 18/3/2014 SE126027.014	SOIL 18/3/2014 SE126027.019	SOIL 18/3/2014 SE126027.028
TRH C10-C14	mg/kg	20	<20	<20	<20	<20	<20	<20
TRH C15-C28	mg/kg	45.0	<45	<45	<45	<45	<45	<45
TRH C29-C36	mg/kg	45.0	<45	<45	<45	<45	<45	<45
TRH C37-C40	mg/kg	100	<100	<100	<100	<100	<100	<100
TRH >C10-C16 (F2)	mg/kg	25.0	<25	<25	<25	<25	<25	<25
TRH >C16-C34 (F3)	mg/kg	90	<90	<90	<90	<90	<90	<90
TRH >C34-C40 (F4)	mg/kg	120	<120	<120	<120	<120	<120	<120
TRH C10-C36 Total	mg/kg	110	<110	<110	<110	<110	<110	<110
TRH C10-C40 Total	mg/kg	210	<210	<210	<210	<210	<210	<210

			BH17 0.2-0.5	BH21 0.2-0.5	BH21 1.3-1.6	X3
PARAMETER	UOM	LOR	SOIL 18/3/2014 SE126027.032	SOIL 18/3/2014 SE126027.036	SOIL 18/3/2014 SE126027.038	SOIL 18/3/2014 SE126027.042
TRH C10-C14	mg/kg	20	<20	<20	<20	<20
TRH C15-C28	mg/kg	45.0	94	<45	<45	<45
TRH C29-C36	mg/kg	45.0	<45	<45	<45	<45
TRH C37-C40	mg/kg	100	<100	<100	<100	<100
TRH >C10-C16 (F2)	mg/kg	25.0	<25	<25	<25	<25
TRH >C16-C34 (F3)	mg/kg	90	130	<90	<90	<90
TRH >C34-C40 (F4)	mg/kg	120	<120	<120	<120	<120
TRH C10-C36 Total	mg/kg	110	<110	<110	<110	<110
TRH C10-C40 Total	mg/kg	210	<210	<210	<210	<210

PAH (Polynuclear Aromatic Hydrocarbons) in Soil [AN420]

			BH1 0.05-0.2	BH3 0-0.3	BH4 0-0.3	BH6 0-0.3	BH7 0-0.3	BH10 0.15-0.45
			SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
			18/3/2014	18/3/2014	18/3/2014	18/3/2014	18/3/2014	18/3/2014
PARAMETER	UOM	LOR	SE126027.001	SE126027.003	SE126027.005	SE126027.007	SE126027.009	SE126027.014
Naphthalene	mg/kg	0.10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2-methylnaphthalene	mg/kg	0.10	<0.1	<0.1	<0.1	<0.1	0.1	<0.1
1-methylnaphthalene	mg/kg	0.10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	0.10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	0.10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	0.10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.10	<0.1	0.2	<0.1	0.1	0.2	<0.1
Anthracene	mg/kg	0.10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	0.10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	0.10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	0.10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b&j)fluoranthene	mg/kg	0.10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(k)fluoranthene	mg/kg	0.10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene	mg/kg	0.10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-cd)pyrene	mg/kg	0.10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a&h)anthracene	mg/kg	0.10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(ghi)perylene	mg/kg	0.10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total PAH	mg/kg	0.80	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8
Carcinogenic PAHs (as BaP TEQ)	TEQ	0.20	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2

			BH11 0.2-0.5	BH13 0.3-0.6	BH14 0.2-0.5	BH15 0.2-0.5	BH15 0.9-1.2	BH16 2.1-2.4
			SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
			18/3/2014	18/3/2014	18/3/2014	18/3/2014	18/3/2014	18/3/2014
PARAMETER	UOM	LOR	SE126027.016	SE126027.019	SE126027.021	SE126027.023	SE126027.024	SE126027.028
Naphthalene	mg/kg	0.10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2-methylnaphthalene	mg/kg	0.10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1-methylnaphthalene	mg/kg	0.10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	0.10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	0.10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	0.10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.10	<0.1	<0.1	<0.1	<0.1	0.2	0.5
Anthracene	mg/kg	0.10	<0.1	<0.1	<0.1	<0.1	<0.1	0.1
Fluoranthene	mg/kg	0.10	<0.1	<0.1	<0.1	<0.1	<0.1	1.2
Pyrene	mg/kg	0.10	<0.1	<0.1	<0.1	<0.1	<0.1	1.2
Benzo(a)anthracene	mg/kg	0.10	<0.1	<0.1	<0.1	<0.1	<0.1	0.8
Chrysene	mg/kg	0.10	<0.1	<0.1	<0.1	<0.1	<0.1	0.5
Benzo(b&j)fluoranthene	mg/kg	0.10	<0.1	<0.1	<0.1	<0.1	<0.1	0.8
Benzo(k)fluoranthene	mg/kg	0.10	<0.1	<0.1	<0.1	<0.1	<0.1	0.5
Benzo(a)pyrene	mg/kg	0.10	<0.1	<0.1	<0.1	<0.1	<0.1	0.8
Indeno(1,2,3-cd)pyrene	mg/kg	0.10	<0.1	<0.1	<0.1	<0.1	<0.1	0.7
Dibenzo(a&h)anthracene	mg/kg	0.10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(ghi)perylene	mg/kg	0.10	<0.1	<0.1	<0.1	<0.1	<0.1	0.4
Total PAH	mg/kg	0.80	<0.8	<0.8	<0.8	<0.8	<0.8	7.6
Carcinogenic PAHs (as BaP TEQ)	TEQ	0.20	<0.2	<0.2	<0.2	<0.2	<0.2	1.1

PAH (Polynuclear Aromatic Hydrocarbons) in Soil [AN420] (continued)

			BH17 0.2-0.5	BH21 0.2-0.5	BH21 1.3-1.6	Х3
PARAMETER	UOM	LOR	SOIL 18/3/2014 SE126027.032	SOIL 18/3/2014 SE126027.036	SOIL 18/3/2014 SE126027.038	SOIL 18/3/2014 SE126027.042
Naphthalene	mg/kg	0.10	<0.1	<0.1	<0.1	<0.1
2-methylnaphthalene	mg/kg	0.10	<0.1	<0.1	<0.1	<0.1
1-methylnaphthalene	mg/kg	0.10	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	0.10	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	0.10	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	0.10	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.10	1.3	<0.1	<0.1	<0.1
Anthracene	mg/kg	0.10	0.4	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.10	3.4	<0.1	0.3	<0.1
Pyrene	mg/kg	0.10	3.6	<0.1	0.3	<0.1
Benzo(a)anthracene	mg/kg	0.10	2.7	<0.1	0.2	<0.1
Chrysene	mg/kg	0.10	1.6	<0.1	0.2	<0.1
Benzo(b&j)fluoranthene	mg/kg	0.10	2.3	<0.1	0.2	<0.1
Benzo(k)fluoranthene	mg/kg	0.10	1.1	<0.1	0.2	<0.1
Benzo(a)pyrene	mg/kg	0.10	2.4	<0.1	0.2	<0.1
Indeno(1,2,3-cd)pyrene	mg/kg	0.10	1.6	<0.1	0.2	<0.1
Dibenzo(a&h)anthracene	mg/kg	0.10	0.2	<0.1	<0.1	<0.1
Benzo(ghi)perylene	mg/kg	0.10	1.1	<0.1	0.2	<0.1
Total PAH	mg/kg	0.80	22	<0.8	2.2	<0.8
Carcinogenic PAHs (as BaP TEQ)	TEQ	0.20	3.4	<0.2	0.3	<0.2

OC Pesticides in Soil [AN400/AN420]

			C1	C2	C3	C4	C5	C6
			2011	201	2011	201	2011	201
			18/3/2014	18/3/2014	18/3/2014	18/3/2014	18/3/2014	18/3/2014
PARAMETER	UOM	LOR	SE126027.045	SE126027.046	SE126027.047	SE126027.048	SE126027.049	SE126027.050
Hexachlorobenzene (HCB)	mg/kg	0.10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha BHC	mg/kg	0.10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Lindane	mg/kg	0.10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	0.10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	0.10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Beta BHC	mg/kg	0.10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Delta BHC	mg/kg	0.10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor epoxide	mg/kg	0.10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDE	mg/kg	0.10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha Endosulfan	mg/kg	0.20	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Gamma Chlordane	mg/kg	0.10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha Chlordane	mg/kg	0.10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
trans-Nonachlor	mg/kg	0.10	<0.1	<0.1	<0.1	<0.1	<0.1	0.1
p,p'-DDE	mg/kg	0.10	<0.1	<0.1	<0.1	<0.1	<0.1	0.1
Dieldrin	mg/kg	0.050	<0.05	<0.05	<0.05	0.30	0.16	0.48
Endrin	mg/kg	0.20	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o,p'-DDD	mg/kg	0.10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDT	mg/kg	0.10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Beta Endosulfan	mg/kg	0.20	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
p,p'-DDD	mg/kg	0.10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDT	mg/kg	0.10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan sulphate	mg/kg	0.10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	0.10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	0.10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Ketone	mg/kg	0.10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Isodrin	mg/kg	0.10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Mirex	mg/kg	0.10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1

SE126027 R0

OC Pesticides in Soil [AN400/AN420] (continued)

			C7	C8	C9	C10	C11	Duplicate D101
			2011	201	2011	2011	2011	201
			18/3/2014	18/3/2014	18/3/2014	18/3/2014	18/3/2014	18/3/2014
PARAMETER	UOM	LOR	SE126027.051	SE126027.052	SE126027.053	SE126027.054	SE126027.055	SE126027.056
Hexachlorobenzene (HCB)	mg/kg	0.10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha BHC	mg/kg	0.10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Lindane	mg/kg	0.10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	0.10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	0.10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Beta BHC	mg/kg	0.10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Delta BHC	mg/kg	0.10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor epoxide	mg/kg	0.10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDE	mg/kg	0.10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha Endosulfan	mg/kg	0.20	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Gamma Chlordane	mg/kg	0.10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha Chlordane	mg/kg	0.10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
trans-Nonachlor	mg/kg	0.10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDE	mg/kg	0.10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	0.050	0.21	0.10	0.11	0.23	0.15	<0.05
Endrin	mg/kg	0.20	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o,p'-DDD	mg/kg	0.10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDT	mg/kg	0.10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Beta Endosulfan	mg/kg	0.20	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
p,p'-DDD	mg/kg	0.10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDT	mg/kg	0.10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan sulphate	mg/kg	0.10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	0.10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	0.10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Ketone	mg/kg	0.10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Isodrin	mg/kg	0.10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Mirex	mg/kg	0.10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1

OP Pesticides in Soil [AN400/AN420]

			C1	C2	C3	C4	C5	C6
PARAMETER	UOM	LOR	SOIL 18/3/2014 SE126027.045	SOIL 18/3/2014 SE126027.046	SOIL 18/3/2014 SE126027.047	SOIL 18/3/2014 SE126027.048	SOIL 18/3/2014 SE126027.049	SOIL 18/3/2014 SE126027.050
Dichlorvos	mg/kg	0.50	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Dimethoate	mg/kg	0.50	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Diazinon (Dimpylate)	mg/kg	0.50	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Fenitrothion	mg/kg	0.20	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Malathion	mg/kg	0.20	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.20	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Parathion-ethyl (Parathion)	mg/kg	0.20	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Bromophos Ethyl	mg/kg	0.20	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Methidathion	mg/kg	0.50	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Ethion	mg/kg	0.20	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Azinphos-methyl (Guthion)	mg/kg	0.20	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2

			C7	C8	C9	C10	C11	Duplicate D101
PARAMETER	UOM	LOR	SOIL 18/3/2014 SE126027.051	SOIL 18/3/2014 SE126027.052	SOIL 18/3/2014 SE126027.053	SOIL 18/3/2014 SE126027.054	SOIL 18/3/2014 SE126027.055	SOIL 18/3/2014 SE126027.056
Dichlorvos	mg/kg	0.50	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Dimethoate	mg/kg	0.50	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Diazinon (Dimpylate)	mg/kg	0.50	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Fenitrothion	mg/kg	0.20	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Malathion	mg/kg	0.20	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.20	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Parathion-ethyl (Parathion)	mg/kg	0.20	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Bromophos Ethyl	mg/kg	0.20	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Methidathion	mg/kg	0.50	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Ethion	mg/kg	0.20	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Azinphos-methyl (Guthion)	mg/kg	0.20	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2

SE126027 R0

PCBs in Soil [AN400/AN420]

			C1	C2	C3	C8	C9	C10
PARAMETER	UOM	LOR	SOIL 18/3/2014 SE126027.045	SOIL 18/3/2014 SE126027.046	SOIL 18/3/2014 SE126027.047	SOIL 18/3/2014 SE126027.052	SOIL 18/3/2014 SE126027.053	SOIL 18/3/2014 SE126027.054
Arochlor 1016	mg/kg	0.20	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1221	mg/kg	0.20	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1232	mg/kg	0.20	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1242	mg/kg	0.20	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1248	mg/kg	0.20	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1254	mg/kg	0.20	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1260	mg/kg	0.20	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1262	mg/kg	0.20	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1268	mg/kg	0.20	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total PCBs (Arochlors)	mg/kg	1.0	<1	<1	<1	<1	<1	<1

			C11	Duplicate D101
PARAMETER	UOM	LOR	SOIL 18/3/2014 SE126027.055	SOIL 18/3/2014 SE126027.056
Arochlor 1016	mg/kg	0.20	<0.2	<0.2
Arochlor 1221	mg/kg	0.20	<0.2	<0.2
Arochlor 1232	mg/kg	0.20	<0.2	<0.2
Arochlor 1242	mg/kg	0.20	<0.2	<0.2
Arochlor 1248	mg/kg	0.20	<0.2	<0.2
Arochlor 1254	mg/kg	0.20	<0.2	<0.2
Arochlor 1260	mg/kg	0.20	<0.2	<0.2
Arochlor 1262	mg/kg	0.20	<0.2	<0.2
Arochlor 1268	mg/kg	0.20	<0.2	<0.2
Total PCBs (Arochlors)	mg/kg	1.0	<1	<1

SE126027 R0

Total Phenolics in Soil [AN289]

			C1	C2	C3	C8	C9	C10
			SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
			18/3/2014	18/3/2014	18/3/2014	18/3/2014	18/3/2014	18/3/2014
PARAMETER	UOM	LOR	SE126027.045	SE126027.046	SE126027.047	SE126027.052	SE126027.053	SE126027.054
Total Phenols	mg/kg	0.10	0.2	1.6	0.7	<0.1	0.2	0.2

			C11	Duplicate D101
			SOIL	SOIL
			18/3/2014	18/3/2014
PARAMETER	UOM	LOR	SE126027.055	SE126027.056
Total Phenols	mg/kg	0.10	0.1	<0.1

Total Cyanide in soil by Discrete Analyser (Aquakem) [AN077/AN287]

			C1	C2	C3	C8	C9	C10
			SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
			18/3/2014	18/3/2014	18/3/2014	18/3/2014	18/3/2014	18/3/2014
PARAMETER	UOM	LOR	SE126027.045	SE126027.046	SE126027.047	SE126027.052	SE126027.053	SE126027.054
Total Cyanide	mg/kg	0.10	0.1	0.2	<0.1	<0.1	0.1	<0.1

			C11	Duplicate D101
			SOIL	SOIL
			18/3/2014	18/3/2014
PARAMETER	UOM	LOR	SE126027.055	SE126027.056
Total Cyanide	mg/kg	0.10	<0.1	0.1

SE126027 R0

pH in soil (1:5) [AN101]

			BH1 0.05-0.2	BH3 0.55-0.65	BH4 0-0.3	BH6 0.45-0.55	BH7 0-0.3	BH8 0.25-0.35
			SOIL 18/3/2014	SOIL 18/3/2014	SOIL 18/3/2014	SOIL 18/3/2014	SOIL 18/3/2014	SOIL 18/3/2014
PARAMETER	UOM	LOR	SE126027.001	SE126027.004	SE126027.005	SE126027.008	SE126027.009	SE126027.011
pH	pH Units	-	8.4	5.9	7.7	6.8	7.7	7.0

			BH10 0-0.15	BH12 0-0.15	BH16 2.1-2.4	BH17 0.2-0.5	BH21 0.2-0.5	BH21 1.3-1.6
			SOIL 18/3/2014	SOIL 18/3/2014	SOIL 18/3/2014	SOIL 18/3/2014	SOIL 18/3/2014	SOIL 18/3/2014
PARAMETER	UOM	LOR	SE126027.013	SE126027.017	SE126027.028	SE126027.032	SE126027.036	SE126027.038
pH	pH Units	-	4.8	5.2	4.9	4.7	4.8	5.8

Exchangeable Cations and Cation Exchange Capacity (CEC/ESP/SAR) [AN122]

			BH1 0.05-0.2	BH3 0.55-0.65	BH4 0-0.3	BH6 0.45-0.55	BH7 0-0.3	BH8 0.25-0.35
PARAMETER	UOM	LOR	SOIL 18/3/2014 SE126027.001	SOIL 18/3/2014 SE126027.004	SOIL 18/3/2014 SE126027.005	SOIL 18/3/2014 SE126027.008	SOIL 18/3/2014 SE126027.009	SOIL 18/3/2014 SE126027.011
Exchangeable Sodium, Na	mg/kg	2.0	430	130	630	150	120	37
Exchangeable Sodium, Na	meq/100g	0.010	1.9	0.55	2.7	0.66	0.52	0.16
Exchangeable Sodium Percentage*	%	0.10	4.9	9.1	19.2	12.5	3.3	4.5
Exchangeable Potassium, K	mg/kg	2.0	170	130	65	75	96	24
Exchangeable Potassium, K	meq/100g	0.010	0.42	0.32	0.16	0.19	0.25	0.06
Exchangeable Potassium	%	0.10	1.1	5.4	1.2	3.7	1.6	1.7
Exchangeable Calcium, Ca	mg/kg	2.0	5200	700	1800	710	2500	550
Exchangeable Calcium, Ca	meq/100g	0.010	26	3.5	9.1	3.6	12	2.8
Exchangeable Calcium Percentage*	%	0.10	68.3	58.4	63.5	68.0	78.5	76.5
Exchangeable Magnesium, Mg	mg/kg	2.0	1200	200	280	100	320	76
Exchangeable Magnesium, Mg	meq/100g	0.020	9.7	1.6	2.3	0.83	2.6	0.62
Exchangeable Magnesium	%	0.10	25.6	27.2	16.1	15.8	16.7	17.3
Cation Exchange Capacity	meq/100g	0.020	38	6.0	14	5.2	16	3.6

			BH10 0-0.15	BH12 0-0.15	BH16 2.1-2.4	BH17 0.2-0.5	BH21 0.2-0.5	BH21 1.3-1.6
PARAMETER	UOM	LOR	SOIL 18/3/2014 SE126027.013	SOIL 18/3/2014 SE126027.017	SOIL 18/3/2014 SE126027.028	SOIL 18/3/2014 SE126027.032	SOIL 18/3/2014 SE126027.036	SOIL 18/3/2014 SE126027.038
Exchangeable Sodium, Na	mg/kg	2.0	7	15	160	27	6	84
Exchangeable Sodium, Na	meq/100g	0.010	0.03	0.06	0.71	0.12	0.03	0.37
Exchangeable Sodium Percentage*	%	0.10	1.9	1.5	4.7	1.3	2.4	3.4
Exchangeable Potassium, K	mg/kg	2.0	36	110	110	150	19	160
Exchangeable Potassium, K	meq/100g	0.010	0.09	0.29	0.27	0.39	0.05	0.40
Exchangeable Potassium	%	0.10	5.5	6.6	1.8	4.2	4.1	3.7
Exchangeable Calcium, Ca	mg/kg	2.0	270	670	2400	1400	180	1300
Exchangeable Calcium, Ca	meq/100g	0.010	1.3	3.3	12	7.1	0.91	6.7
Exchangeable Calcium Percentage*	%	0.10	79.3	77.0	81.3	77.5	77.5	62.2
Exchangeable Magnesium, Mg	mg/kg	2.0	27	79	220	190	23	400
Exchangeable Magnesium, Mg	meq/100g	0.020	0.22	0.65	1.8	1.5	0.19	3.3
Exchangeable Magnesium	%	0.10	13.3	14.9	12.2	17.0	16.0	30.6
Cation Exchange Capacity	meq/100g	0.020	1.7	4.3	15	9.1	1.2	11

SE126027 R0

TOC in Soil [AN188]

			BH1 0.05-0.2	BH3 0.55-0.65	BH4 0-0.3	BH6 0 45-0 55	BH7 0-0.3	BH8 0.25-0.35
			SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
			18/3/2014	18/3/2014	18/3/2014	18/3/2014	18/3/2014	18/3/2014
DADAMETED	LIOM		SE126027 001	SE126027 004	SE126027 005	SE126027.008	SE126027 009	SE126027 011
	001	LOK	OE TECCET.COT	02120021.004	OL ILCOLI.000	02120021.000	02120021.000	OL 120021.011
Total Organic Carbon	%w/w	0.050	0.73	14	23	0.14	19	0.43
	/011/11	0.000	0.73	1.9	2.3	U. 14	1.0	0.40

			BH10 0-0.15	BH12 0-0.15	BH16 2.1-2.4	BH17 0.2-0.5	BH21 0.2-0.5	BH21 1.3-1.6
			SOIL 18/3/2014	SOIL 18/3/2014	SOIL 18/3/2014	SOIL 18/3/2014	SOIL 18/3/2014	SOIL 18/3/2014
PARAMETER	UOM	LOR	SE126027.013	SE126027.017	SE126027.028	SE126027.032	SE126027.036	SE126027.038
Total Organic Carbon	%w/w	0.050	1.0	2.0	0.08	0.42	0.51	0.17

Total Recoverable Metals in Soil by ICPOES from EPA 200.8 Digest [AN040/AN320]

			BH3 0.55-0.65	BH6 0.45-0.55	BH8 0.25-0.35	BH15 1.25-1.35	BH16 3.45-3.55	BH21 1.75-1.85
PARAMETER	UOM	LOR	SOIL 18/3/2014 SE126027.004	SOIL 18/3/2014 SE126027.008	SOIL 18/3/2014 SE126027.011	SOIL 18/3/2014 SE126027.025	SOIL 18/3/2014 SE126027.030	SOIL 18/3/2014 SE126027.039
Arsenic, As	mg/kg	3.0	4	<3	<3	<3	<3	43
Cadmium, Cd	mg/kg	0.30	<0.3	<0.3	<0.3	<0.3	0.3	0.9
Chromium, Cr	mg/kg	0.30	12	9.2	5.4	6.7	7.8	18
Copper, Cu	mg/kg	0.50	9.6	1.1	4.8	2.8	9.9	73
Lead, Pb	mg/kg	1.0	20	4	22	9	23	200
Nickel, Ni	mg/kg	0.50	12	4.2	3.1	0.9	2.4	8.8
Zinc, Zn	mg/kg	0.50	43	4.5	17	5.3	22	360

			C1	C2	C3	C4	C5	C6
PARAMETER	UOM	LOR	SOIL 18/3/2014 SE126027.045	SOIL 18/3/2014 SE126027.046	SOIL 18/3/2014 SE126027.047	SOIL 18/3/2014 SE126027.048	SOIL 18/3/2014 SE126027.049	SOIL 18/3/2014 SE126027.050
Arsenic, As	mg/kg	3.0	3	<3	<3	<3	5	<3
Cadmium, Cd	mg/kg	0.30	0.4	0.6	0.4	2.2	0.8	1.1
Chromium, Cr	mg/kg	0.30	13	31	55	6.1	7.5	9.8
Copper, Cu	mg/kg	0.50	72	16	19	6.9	19	12
Lead, Pb	mg/kg	1.0	11	22	8	10	23	21
Nickel, Ni	mg/kg	0.50	75	28	56	2.6	2.7	3.1
Zinc, Zn	mg/kg	0.50	45	120	39	13	21	29

			C7	C8	C9	C10	C11	Duplicate D101
PARAMETER	UOM	LOR	SOIL 18/3/2014 SE126027.051	SOIL 18/3/2014 SE126027.052	SOIL 18/3/2014 SE126027.053	SOIL 18/3/2014 SE126027.054	SOIL 18/3/2014 SE126027.055	SOIL 18/3/2014 SE126027.056
Arsenic, As	mg/kg	3.0	7	<3	<3	<3	5	<3
Cadmium, Cd	mg/kg	0.30	0.5	0.5	0.6	0.4	0.4	0.5
Chromium, Cr	mg/kg	0.30	9.0	5.2	5.8	5.7	7.7	17
Copper, Cu	mg/kg	0.50	30	8.2	10	9.2	15	68
Lead, Pb	mg/kg	1.0	100	8	13	21	49	17
Nickel, Ni	mg/kg	0.50	3.3	9.5	9.0	1.5	2.4	76
Zinc, Zn	mg/kg	0.50	53	10	15	15	37	50

Mercury in Soil [AN312]

			BH3 0.55-0.65	BH6 0.45-0.55	BH8 0.25-0.35	BH15 1.25-1.35	BH16 3.45-3.55	BH21 1.75-1.85
			SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
			18/3/2014	18/3/2014	18/3/2014	18/3/2014	18/3/2014	18/3/2014
PARAMETER	UOM	LOR	SE126027.004	SE126027.008	SE126027.011	SE126027.025	SE126027.030	SE126027.039
Mercury	mg/kg	0.010	0.05	<0.01	0.08	0.03	0.49	0.17

			C1	C2	C3	C4	C5	C6
			SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
			18/3/2014	18/3/2014	18/3/2014	18/3/2014	18/3/2014	18/3/2014
PARAMETER	UOM	LOR	SE126027.045	SE126027.046	SE126027.047	SE126027.048	SE126027.049	SE126027.050
Mercury	mg/kg	0.010	<0.01	0.09	0.03	0.45	0.30	0.92

			C7	C8	C9	C10	C11	Duplicate D101
			SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
			18/3/2014	18/3/2014	18/3/2014	18/3/2014	18/3/2014	18/3/2014
PARAMETER	UOM	LOR	SE126027.051	SE126027.052	SE126027.053	SE126027.054	SE126027.055	SE126027.056
Mercury	mg/kg	0.010	0.43	0.45	0.43	0.13	0.23	0.03

SE126027 R0

Fibre Identification in soil [AN602]

			BH1 0.05-0.2	BH4 0-0.3	BH7 0-0.3	BH10 0.15-0.45	BH13 0.3-0.6	BH16 2.1-2.4
			SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
			18/3/2014	18/3/2014	18/3/2014	18/3/2014	18/3/2014	18/3/2014
PARAMETER	UOM	LOR	SE126027.001	SE126027.005	SE126027.009	SE126027.014	SE126027.019	SE126027.028
Asbestos Detected	No unit	-	No	No	No	No	No	No
Estimated Fibres	%w/w	0.010	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01

			BH17 0.2-0.5	BH21 0.2-0.5	BH21 1.3-1.6
DADAMETED	LIOM	IOP	SOIL 18/3/2014 SE126027 032	SOIL 18/3/2014 SE126027 036	SOIL 18/3/2014 SE126027 038
PANAMETER	00141	LOK	OE TECCET.COE	02120021.000	02120021.000
Asbestos Detected	No unit	-	No	No	No
Estimated Fibres	%w/w	0.010	<0.01	<0.01	<0.01

SE126027 R0

Moisture Content [AN002]

			BH1 0.05-0.2	BH2 0.1-0.4	BH3 0-0.3	BH3 0.55-0.65	BH4 0-0.3	BH5 0-0.15
			SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
			18/3/2014	18/3/2014	18/3/2014	18/3/2014	18/3/2014	18/3/2014
PARAMETER	UOM	LOR	SE126027.001	SE126027.002	SE126027.003	SE126027.004	SE126027.005	SE126027.006
% Moisture	%	0.50	8.2	-	25	15	25	-

			BH6 0-0.3	BH6 0.45-0.55	BH7 0-0.3	BH8 0.05-0.2	BH8 0.25-0.35	BH9 0.05-0.2
			SOIL 18/3/2014	SOIL 18/3/2014	SOIL 18/3/2014	SOIL 18/3/2014	SOIL 18/3/2014	SOIL 18/3/2014
PARAMETER	UOM	LOR	SE126027.007	SE126027.008	SE126027.009	SE126027.010	SE126027.011	SE126027.012
% Moisture	%	0.50	19	11	18	-	9.9	-

			BH10 0-0.15	BH10 0.15-0.45	BH11 0-0.15	BH11 0.2-0.5	BH12 0-0.15	BH13 0-0.15
			SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
			18/3/2014	18/3/2014	18/3/2014	18/3/2014	18/3/2014	18/3/2014
PARAMETER	UOM	LOR	SE126027.013	SE126027.014	SE126027.015	SE126027.016	SE126027.017	SE126027.018
% Moisture	%	0.50	8.5	17	-	12	13	-

			BH13 0.3-0.6	BH14 0-0.15	BH14 0.2-0.5	BH15 0-0.15	BH15 0.2-0.5	BH15 0.9-1.2
			SOIL 18/3/2014	SOIL 18/3/2014	SOIL 18/3/2014	SOIL 18/3/2014	SOIL 18/3/2014	SOIL 18/3/2014
PARAMETER	UOM	LOR	SE126027.019	SE126027.020	SE126027.021	SE126027.022	SE126027.023	SE126027.024
% Moisture	%	0.50	10	-	18	-	15	18

			BH15 1.25-1.35	BH16 0-0.1	BH16 0.1-0.4	BH16 2.1-2.4	BH16 3.1-3.4	BH16 3.45-3.55
			SOIL 18/3/2014	SOIL 18/3/2014	SOIL 18/3/2014	SOIL 18/3/2014	SOIL 18/3/2014	SOIL 18/3/2014
PARAMETER	UOM	LOR	SE126027.025	SE126027.026	SE126027.027	SE126027.028	SE126027.029	SE126027.030
% Moisture	%	0.50	10	-	-	12	-	11

			BH17 0-0.15	BH17 0.2-0.5	BH18 0-0.15	BH19 0-0.15	BH20 0-0.15	BH21 0.2-0.5
			SOIL 18/3/2014	SOIL 18/3/2014	SOIL 18/3/2014	SOIL 18/3/2014	SOIL 18/3/2014	SOIL 18/3/2014
PARAMETER	UOM	LOR	SE126027.031	SE126027.032	SE126027.033	SE126027.034	SE126027.035	SE126027.036
% Moisture	%	0.50	-	15	-	-	-	4.5

			BH21 0.8-1.1	BH21 1.3-1.6	BH21 1.75-1.85	Х3	C1	C2
			SOIL 18/3/2014	SOIL 18/3/2014	SOIL 18/3/2014	SOIL 18/3/2014	SOIL 18/3/2014	SOIL 18/3/2014
PARAMETER	UOM	LOR	SE126027.037	SE126027.038	SE126027.039	SE126027.042	SE126027.045	SE126027.046
% Moisture	%	0.50	-	16	19	9.2	10	17

			C3	C4	C5	C6	C7	C8
			SOIL 18/3/2014	SOIL 18/3/2014	SOIL 18/3/2014	SOIL 18/3/2014	SOIL 18/3/2014	SOIL 18/3/2014
PARAMETER	UOM	LOR	SE126027.047	SE126027.048	SE126027.049	SE126027.050	SE126027.051	SE126027.052
% Moisture	%	0.50	17	9.9	14	11	11	18

Moisture Content [AN002] (continued)

			C9	C10	C11	Duplicate D101
			SOIL	SOIL	SOIL	SOIL
			18/3/2014	18/3/2014	18/3/2014	18/3/2014
PARAMETER	UOM	LOR	SE126027.053	SE126027.054	SE126027.055	SE126027.056
% Moisture	%	0.50	12	12	12	13

VOCs in Water [AN433/AN434]

			Rinsate R1
			WATER
			18/3/2014
PARAMETER	UOM	LOR	SE126027.043
Benzene	µg/L	0.50	<0.5
Toluene	µg/L	0.50	<0.5
Ethylbenzene	µg/L	0.50	<0.5
m/p-xylene	µg/L	1.0	<1
o-xylene	µg/L	0.50	<0.5
Naphthalene	µg/L	0.50	<0.5
Total Xylenes	µg/L	1.50	<1.5
Total BTEX	µg/L	3.0	<3

Volatile Petroleum Hydrocarbons in Water [AN433/AN434/AN410]

			Rinsate R1
			WATER 18/3/2014
PARAMETER	UOM	LOR	SE126027.043
Benzene (F0)	µg/L	0.50	<0.5
TRH C6-C9	µg/L	40	<40
TRH C6-C10	µg/L	50	<50
TRH C6-C10 minus BTEX (F1)	µg/L	50	<50

TRH (Total Recoverable Hydrocarbons) in Water [AN403]

			Rinsate R1 WATER 18/3/2014
PARAMETER	UOM	LOR	SE126027.043
TRH C10-C14	µg/L	50	<50
TRH C15-C28	µg/L	200	<200
TRH C29-C36	µg/L	200	<200
TRH C37-C40	μg/L	200	<200
TRH >C10-C16 (F2)	μg/L	60	<60
TRH >C16-C34 (F3)	μg/L	500	<500
TRH >C34-C40 (F4)	µg/L	500	<500
TRH C10-C36	μg/L	450	<450
TRH C10-C40	μg/L	650	<650

PAH (Polynuclear Aromatic Hydrocarbons) in Water [AN420]

			Rinsate R1
PARAMETER	UOM	LOR	WATER 18/3/2014 SE126027.043
Naphthalene	µg/L	0.10	<0.1
2-methylnaphthalene	µg/L	0.10	<0.1
1-methylnaphthalene	µg/L	0.10	<0.1
Acenaphthylene	μg/L	0.10	<0.1
Acenaphthene	µg/L	0.10	<0.1
Fluorene	μg/L	0.10	<0.1
Phenanthrene	μg/L	0.10	<0.1
Anthracene	μg/L	0.10	<0.1
Fluoranthene	μg/L	0.10	<0.1
Pyrene	µg/L	0.10	<0.1
Benzo(a)anthracene	μg/L	0.10	<0.1
Chrysene	μg/L	0.10	<0.1
Benzo(b&j)fluoranthene	µg/L	0.10	<0.1
Benzo(k)fluoranthene	µg/L	0.10	<0.1
Benzo(a)pyrene	μg/L	0.10	<0.1
Indeno(1,2,3-cd)pyrene	μg/L	0.10	<0.1
Dibenzo(a&h)anthracene	μg/L	0.10	<0.1
Benzo(ghi)perylene	µg/L	0.10	<0.1
Total PAH (18)	µg/L	1.0	<1

SE126027 R0

OC Pesticides in Water [AN400/AN420]

			Rinsate R1
			WATER
			18/3/2014
PARAMETER	UOM	LOR	SE126027.043
Hexachlorobenzene (HCB)	µg/L	0.10	<0.1
Alpha BHC	μg/L	0.10	<0.1
Lindane (gamma BHC)	μg/L	0.10	<0.1
Heptachlor	µg/L	0.10	<0.1
Aldrin	µg/L	0.10	<0.1
Beta BHC	µg/L	0.10	<0.1
Delta BHC	µg/L	0.10	<0.1
Heptachlor epoxide	µg/L	0.10	<0.1
o,p'-DDE	µg/L	0.10	<0.1
Alpha Endosulfan	µg/L	0.10	<0.1
Gamma Chlordane	µg/L	0.10	<0.1
Alpha Chlordane	µg/L	0.10	<0.1
trans-Nonachlor	µg/L	0.10	<0.1
p,p'-DDE	µg/L	0.10	<0.1
Dieldrin	µg/L	0.10	<0.1
Endrin	µg/L	0.10	<0.1
o,p'-DDD	µg/L	0.10	<0.1
o,p'-DDT	µg/L	0.10	<0.1
Beta Endosulfan	µg/L	0.10	<0.1
p,p'-DDD	µg/L	0.10	<0.1
p,p'-DDT	µg/L	0.10	<0.1
Endosulfan sulphate	µg/L	0.10	<0.1
Endrin aldehyde	µg/L	0.10	<0.1
Methoxychlor	μg/L	0.10	<0.1
Endrin ketone	µg/L	0.10	<0.1
Isodrin	µg/L	0.10	<0.1
Mirex	µg/L	0.10	<0.1

OP Pesticides in Water [AN400/AN420]

			Rinsate R1
			WATER 18/3/2014
PARAMETER	UOM	LOR	SE126027.043
Dichlorvos	µg/L	0.50	<0.5
Dimethoate	µg/L	0.50	<0.5
Diazinon (Dimpylate)	µg/L	0.50	<0.5
Fenitrothion	µg/L	0.20	<0.2
Malathion	µg/L	0.20	<0.2
Chlorpyrifos (Chlorpyrifos Ethyl)	µg/L	0.20	<0.2
Parathion-ethyl (Parathion)	µg/L	0.20	<0.2
Bromophos Ethyl	µg/L	0.20	<0.2
Methidathion	µg/L	0.50	<0.5
Ethion	µg/L	0.20	<0.2
Azinphos-methyl	µg/L	0.20	<0.2

PCBs in Water [AN400/AN420]

PARAMETER	UOM	LOR	Rinsate R1 WATER 18/3/2014 SE126027.043
Arochlor 1016	µg/L	1.0	<1
Arochlor 1221	µg/L	1.0	<1
Arochlor 1232	µg/L	1.0	<1
Arochlor 1242	µg/L	1.0	<1
Arochlor 1248	µg/L	1.0	<1
Arochlor 1254	µg/L	1.0	<1
Arochlor 1260	µg/L	1.0	<1
Arochlor 1262	µg/L	1.0	<1
Arochlor 1268	µg/L	1.0	<1
Total Arochlors*	µg/L	5.0	<5

Total Phenolics in Water [AN289]

			Rinsate R1
			WATER
			18/3/2014
PARAMETER	UOM	LOR	SE126027.043
Total Phenols	mg/L	0.010	<0.01

Total Cyanide in water by Discrete Analyser (Aquakem) [AN077/AN287]

			Rinsate R1
DADAMETED			WATER 18/3/2014
FARAMETER	UOIWI	LUK	SE 120021.045
Total Cyanide	mg/L	0.0050	<0.005

Metals in Water (Dissolved) by ICPOES [AN320/AN321]

			Rinsate R1
			WATER
			18/3/2014
PARAMETER	UOM	LOR	SE126027.043
Arsenic, As	mg/L	0.020	0.02
Cadmium, Cd	mg/L	0.0010	<0.001
Chromium, Cr	mg/L	0.0050	<0.005
Copper, Cu	mg/L	0.0050	<0.005
Lead, Pb	mg/L	0.020	<0.02
Nickel, Ni	mg/L	0.0050	<0.005
Zinc, Zn	mg/L	0.010	<0.01

Mercury (dissolved) in Water [AN311/AN312]

			Rinsate R1
DADAMETED	11014		WATER 18/3/2014
PARAMETER	UUW	LUK	3E120027.043
Mercury	mg/L	0.00010	<0.0001

METHOD	METHODOLOGY SUMMARY
AN002	The test is carried out by drying (at either 40°C or 105°C) a known mass of sample in a weighed evaporating basin. After fully dry the sample is re-weighed. Samples such as sludge and sediment having high percentages of moisture will take some time in a drying oven for complete removal of water.
AN020	Unpreserved water sample is filtered through a 0.45µm membrane filter and acidified with nitric acid similar to APHA3030B.
AN040	A portion of sample is digested with Nitric acid to decompose organic matter and Hydrochloric acid to complete the digestion of metals and then filtered for analsysis by ASS or ICP as per USEPA Method 200.8.
AN040/AN320	A portion of sample is digested with nitric acid to decompose organic matter and hydrochloric acid to complete the digestion of metals. The digest is then analysed by ICP OES with metals results reported on the dried sample basis. Based on USEPA method 200.8 and 6010C.
AN077	Hydrogen cyanide is liberated from an acidified alkali soil extract by distillation and purging with air. The hydrogen cyanide gas is then collected by passing it through a sodium hydroxide scrubbing solution. The scrubbing solution will then be analysed for cyanide by the appropriate method.
AN083	Separatory funnels are used for aqueous samples and extracted by transferring an appropriate volume (mass) of liquid into a separatory funnel and adding 3 serial aliquots of dichloromethane. Samples receive a single extraction at pH 7 to recover base / neutral analytes and two extractions at pH < 2 to recover acidic analytes. QC samples are prepared by spiking organic free water with target analytes and extracting as per samples.
AN088	Orbital rolling for Organic pollutants are extracted from soil/sediment by transferring an appropriate mass of sample to a clear soil jar and extracting with 1:1 Dichloromethane/Acetone. Orbital Rolling method is intended for the extraction of semi-volatile organic compounds from soil/sediment samples, and is based somewhat on USEPA method 3570 (Micro Organic extraction and sample preparation). Method 3700.
AN101	pH in Soil Sludge Sediment and Water: pH is measured electrometrically using a combination electrode (glass plus reference electrode) and is calibrated against 3 buffers purchased commercially. For soils, an extract with water (or 0.01M CaCl2) is made at a ratio of 1:5 and the pH determined and reported on the extract. Reference APHA 4500-H+.
AN122	Exchangeable Cations, CEC and ESP: Soil sample is extracted in 1M Ammonium Acetate at pH=7 (or 1M Ammonium Chloride at pH=7) with cations (Na, K, Ca & Mg) then determined by ICP OES/ICP MS and reported as Exchangeable Cations. For saline soils, these results can be corrected for water soluble cations and reported as Exchangeable cations in meq/100g or soil can be pretreated (aqueous ethanol/aqueous glycerol) prior to extraction. Cation Exchange Capacity (CEC) is the sum of the exchangeable cations in meq/100g.
AN188	The organic material in the soil sample is oxidised with chromic acid in the presence of excess sulphuric acid, without external heat being applied. The excess dichromate ion is determined by titration with standard ammonium iron (II) sulphate solution and the amount of oxidised material is calculated from the quantity of dichromate reduced. Referenced to NEPM 105 and AS1289.1.1.1.
AN287	A buffered distillate or water sample is treated with chloramine/barbituric acid reagents and the intensity of the colour developed is proportional to the cyanide concentration by Aquakem DA.
AN289	Analysis of Total Phenols in Soil Sediment and Water: Steam distillable phenols react with 4-aminoantipyrine at pH 7.9±0.1 in the presence of potassium ferricyanide to form a coloured antipyrine dye analysed by Discrete Analyser. Reference APHA 5530 B/D.
AN311/AN312	Mercury by Cold Vapour AAS in Waters: Mercury ions are reduced by stannous chloride reagent in acidic solution to elemental mercury. This mercury vapour is purged by nitrogen into a cold cell in an atomic absorption spectrometer or mercury analyser. Quantification is made by comparing absorbances to those of the calibration standards. Reference APHA 3112/3500.
AN312	Mercury by Cold Vapour AAS in Soils: After digestion with nitric acid, hydrogen peroxide and hydrochloric acid, mercury ions are reduced by stannous chloride reagent in acidic solution to elemental mercury. This mercury vapour is purged by nitrogen into a cold cell in an atomic absorption spectrometer or mercury analyser. Quantification is made by comparing absorbances to those of the calibration standards. Reference APHA 3112/3500
AN320/AN321	Metals by ICP-OES: Samples are preserved with 10% nitric acid for a wide range of metals and some non-metals. This solution is measured by Inductively Coupled Plasma. Solutions are aspirated into an argon plasma at 8000-10000K and emit characteristic energy or light as a result of electron transitions through unique energy levels. The emitted light is focused onto a diffraction grating where it is separated into components.
AN400	OC and OP Pesticides by GC-ECD: The determination of organochlorine (OC) and organophosphorus (OP) pesticides and polychlorinated biphenyls (PCBs) in soils, sludges and groundwater. (Based on USEPA methods 3510, 3550, 8140 and 8080.)
AN403	Total Recoverable Hydrocarbons: Determination of Hydrocarbons by gas chromatography after a solvent extraction. Detection is by flame ionisation detector (FID) that produces an electronic signal in proportion to the combustible matter passing through it. Total Recoverable Hydrocarbons (TRH) are routinely reported as four alkane groupings based on the carbon chain length of the compounds: C6-C9, C10-C14, C15-C28 and C29-C36 and in recognition of the Draft NEPM 2011, >C10-C16 (F2), >C16-C34 (F3) and >C34-C40 (F4). F2 is not corrected for Naphthalene.

AN420	(SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols (etc) in soils, sediments and waters are determined by GCMS/ECD technique following appropriate solvent extraction process (Based on USEPA 3500C and 8270D).
AN433/AN434	VOCs and C6-C9 Hydrocarbons by GC-MS P&T: VOC's are volatile organic compounds. The sample is presented to a gas chromatograph via a purge and trap (P&T) concentrator and autosampler and is detected with a Mass Spectrometer (MSD). Solid samples are initially extracted with methanol whilst liquid samples are processed directly. References: USEPA 5030B, 8020A, 8260.
AN433/AN434/AN410	VOCs and C6-C9/C6-C10 Hydrocarbons by GC-MS P&T: VOC's are volatile organic compounds. The sample is presented to a gas chromatograph via a purge and trap (P&T) concentrator and autosampler and is detected with a Mass Spectrometer (MSD). Solid samples are initially extracted with methanol whilst liquid samples are processed directly. References: USEPA 5030B, 8020A, 8260.
AN602	Qualitative identification of chrysotile, amosite and crocidolite in bulk samples by polarised light microscopy (PLM) in conjunction with dispersion staining (DS). AS4964 provides the basis for this document. Unequivocal identification of the asbestos minerals present is made by obtaining sufficient diagnostic 'clues', which provide a reasonable degree of certainty, dispersion staining is a mandatory 'clue' for positive identification. If sufficient 'clues' are absent, then positive identification of asbestos is not possible. This procedure requires removal of suspect fibres/bundles from the sample which cannot be returned.

FOOTNOTES

- * Analysis not covered by the scope of accreditation.
- ** Indicative data, theoretical holding time exceeded.

 Performed by outside laboratory. NVL IS LNR

Not analysed. Not validated. Insufficient sample for analysis. Sample listed, but not received. UOM LOR ↑↓

Unit of Measure. Limit of Reporting. Raised/lowered Limit of Reporting.

Samples analysed as received. Solid samples expressed on a dry weight basis.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: http://www.sgs.com.au.pv.sgsv3/~/media/Local/Australia/Documents/Technical%20Documents/MP-AU-ENV-QU-022%20QA%20QC%20Plan.pdf

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/en/Terms-and-Conditions/General-Conditions-of-Services-English.aspx. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This report must not be reproduced, except in full.

STATEMENT OF QA/QC PERFORMANCE

CLIENT DETAILS		LABORATORY DETAI	ILS	
Contact	John Xu	Manager	Huong Crawford	
Client	Geotechnique	Laboratory	SGS Alexandria Environmental	
Address	P.O. Box 880 PENRITH NSW 2751	Address	Unit 16, 33 Maddox St Alexandria NSW 2015	
Telephone	02 4722 2700	Telephone	+61 2 8594 0400	
Facsimile	02 4722 6161	Facsimile	+61 2 8594 0499	
Email	john.xu@geotech.com.au	Email	au.environmental.sydney@sgs.com	
Project	13138-1 - Canterbury	SGS Reference	SE126027 R0	
Order Number	(Not specified)	Report Number	0000078931	
Samples	57	Date Reported	28 Mar 2014	,

COMMENTS

All the laboratory data for each environmental matrix was compared to SGS Environmental Services' stated Data Quality Objectives (DQO). Comments arising from the comparison were made and are reported below.

The data relating to sampling was taken from the Chain of Custody document and was supplied by the Client. This QA/QC Statement must be read in conjunction with the referenced Analytical Report. The Statement and the Analytical Report must not be reproduced except in full.

All Data Quality Objectives were met with the exception of the following:

Matrix Spike

Total Recoverable Metals in Soil by ICPOES from EPA 200.8 Digest

2 items

Sample counts by matrix	43 Soils, 1 Water	Type of documentation received	COC	
Date documentation received	21/3/14@9:58/15:37	Samples received in good order	Yes	
Samples received without headspace	Yes	Sample temperature upon receipt	3.9°C	
Sample container provider	SGS	Turnaround time requested	Standard	
Samples received in correct containers	Yes	Sufficient sample for analysis	Yes	
Sample cooling method	Ice Bricks	Samples clearly labelled	Yes	
Complete documentation received	Yes			

SGS Australia Pty Ltd ABN 44 000 964 278 Environmental Services

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 A

Australia t + Australia

t +61 2 8594 0400 f +61 2 8594 0499

www.au.sgs.com

HOLDING TIME SUMMARY

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

neable Cations and Cation Exchange Canacity (CEC/ESP/SAR)

Exchangeable Cations and Ca	changeable Cations and Cation Exchange Capacity (CEC/ESP/SAR) Method: ME-(AU)-[ENV]AN122										
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed			
BH1 0.05-0.2	SE126027.001	LB054734	18 Mar 2014	19 Mar 2014	15 Apr 2014	24 Mar 2014	15 Apr 2014	26 Mar 2014			
BH3 0.55-0.65	SE126027.004	LB054734	18 Mar 2014	19 Mar 2014	15 Apr 2014	24 Mar 2014	15 Apr 2014	26 Mar 2014			
BH4 0-0.3	SE126027.005	LB054734	18 Mar 2014	19 Mar 2014	15 Apr 2014	24 Mar 2014	15 Apr 2014	26 Mar 2014			
BH6 0.45-0.55	SE126027.008	LB054734	18 Mar 2014	19 Mar 2014	15 Apr 2014	24 Mar 2014	15 Apr 2014	26 Mar 2014			
BH7 0-0.3	SE126027.009	LB054734	18 Mar 2014	19 Mar 2014	15 Apr 2014	24 Mar 2014	15 Apr 2014	26 Mar 2014			
BH8 0.25-0.35	SE126027.011	LB054734	18 Mar 2014	19 Mar 2014	15 Apr 2014	24 Mar 2014	15 Apr 2014	26 Mar 2014			
BH10 0-0.15	SE126027.013	LB054734	18 Mar 2014	19 Mar 2014	15 Apr 2014	24 Mar 2014	15 Apr 2014	26 Mar 2014			
BH12 0-0.15	SE126027.017	LB054734	18 Mar 2014	19 Mar 2014	15 Apr 2014	24 Mar 2014	15 Apr 2014	26 Mar 2014			
BH16 2.1-2.4	SE126027.028	LB054734	18 Mar 2014	19 Mar 2014	15 Apr 2014	24 Mar 2014	15 Apr 2014	26 Mar 2014			
BH17 0.2-0.5	SE126027.032	LB054734	18 Mar 2014	19 Mar 2014	15 Apr 2014	24 Mar 2014	15 Apr 2014	26 Mar 2014			
BH21 0.2-0.5	SE126027.036	LB054734	18 Mar 2014	19 Mar 2014	15 Apr 2014	24 Mar 2014	15 Apr 2014	26 Mar 2014			
BH21 1.3-1.6	SE126027.038	LB054734	18 Mar 2014	19 Mar 2014	15 Apr 2014	24 Mar 2014	15 Apr 2014	26 Mar 2014			
Fibre Identification in soil							Method: I	ME-(AU)-[ENV]AN602			

Fibre Identification in soil

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH1 0.05-0.2	SE126027.001	LB054859	18 Mar 2014	19 Mar 2014	18 Mar 2015	26 Mar 2014	18 Mar 2015	27 Mar 2014
BH4 0-0.3	SE126027.005	LB054859	18 Mar 2014	19 Mar 2014	18 Mar 2015	26 Mar 2014	18 Mar 2015	27 Mar 2014
BH7 0-0.3	SE126027.009	LB054859	18 Mar 2014	19 Mar 2014	18 Mar 2015	26 Mar 2014	18 Mar 2015	27 Mar 2014
BH10 0.15-0.45	SE126027.014	LB054859	18 Mar 2014	19 Mar 2014	18 Mar 2015	26 Mar 2014	18 Mar 2015	27 Mar 2014
BH13 0.3-0.6	SE126027.019	LB054859	18 Mar 2014	19 Mar 2014	18 Mar 2015	26 Mar 2014	18 Mar 2015	27 Mar 2014
BH16 2.1-2.4	SE126027.028	LB054859	18 Mar 2014	19 Mar 2014	18 Mar 2015	26 Mar 2014	18 Mar 2015	27 Mar 2014
BH17 0.2-0.5	SE126027.032	LB054859	18 Mar 2014	19 Mar 2014	18 Mar 2015	26 Mar 2014	18 Mar 2015	27 Mar 2014
BH21 0.2-0.5	SE126027.036	LB054859	18 Mar 2014	19 Mar 2014	18 Mar 2015	26 Mar 2014	18 Mar 2015	27 Mar 2014
BH21 1.3-1.6	SE126027.038	LB054859	18 Mar 2014	19 Mar 2014	18 Mar 2015	26 Mar 2014	18 Mar 2015	27 Mar 2014
Mercury (dissolved) in Water							Method: ME-(AU)-[ENV]AN311/AN312

Mercury (dissolved) in Water

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
Rinsate R1	SE126027.043	LB054782	18 Mar 2014	19 Mar 2014	15 Apr 2014	25 Mar 2014	15 Apr 2014	27 Mar 2014

Mercury in Soil

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH3 0.55-0.65	SE126027.004	LB054815	18 Mar 2014	19 Mar 2014	15 Apr 2014	26 Mar 2014	15 Apr 2014	27 Mar 2014
BH6 0.45-0.55	SE126027.008	LB054815	18 Mar 2014	19 Mar 2014	15 Apr 2014	26 Mar 2014	15 Apr 2014	27 Mar 2014
BH8 0.25-0.35	SE126027.011	LB054815	18 Mar 2014	19 Mar 2014	15 Apr 2014	26 Mar 2014	15 Apr 2014	27 Mar 2014
BH15 1.25-1.35	SE126027.025	LB054815	18 Mar 2014	19 Mar 2014	15 Apr 2014	26 Mar 2014	15 Apr 2014	27 Mar 2014
BH16 3.45-3.55	SE126027.030	LB054815	18 Mar 2014	19 Mar 2014	15 Apr 2014	26 Mar 2014	15 Apr 2014	27 Mar 2014
BH21 1.75-1.85	SE126027.039	LB054815	18 Mar 2014	19 Mar 2014	15 Apr 2014	26 Mar 2014	15 Apr 2014	27 Mar 2014
C1	SE126027.045	LB054816	18 Mar 2014	19 Mar 2014	15 Apr 2014	26 Mar 2014	15 Apr 2014	27 Mar 2014
C2	SE126027.046	LB054816	18 Mar 2014	19 Mar 2014	15 Apr 2014	26 Mar 2014	15 Apr 2014	27 Mar 2014
C3	SE126027.047	LB054816	18 Mar 2014	19 Mar 2014	15 Apr 2014	26 Mar 2014	15 Apr 2014	27 Mar 2014
C4	SE126027.048	LB054816	18 Mar 2014	19 Mar 2014	15 Apr 2014	26 Mar 2014	15 Apr 2014	27 Mar 2014
C5	SE126027.049	LB054816	18 Mar 2014	19 Mar 2014	15 Apr 2014	26 Mar 2014	15 Apr 2014	27 Mar 2014
C6	SE126027.050	LB054816	18 Mar 2014	19 Mar 2014	15 Apr 2014	26 Mar 2014	15 Apr 2014	27 Mar 2014
C7	SE126027.051	LB054816	18 Mar 2014	19 Mar 2014	15 Apr 2014	26 Mar 2014	15 Apr 2014	27 Mar 2014
C8	SE126027.052	LB054816	18 Mar 2014	19 Mar 2014	15 Apr 2014	26 Mar 2014	15 Apr 2014	27 Mar 2014
C9	SE126027.053	LB054816	18 Mar 2014	19 Mar 2014	15 Apr 2014	26 Mar 2014	15 Apr 2014	27 Mar 2014
C10	SE126027.054	LB054816	18 Mar 2014	19 Mar 2014	15 Apr 2014	26 Mar 2014	15 Apr 2014	27 Mar 2014
C11	SE126027.055	LB054816	18 Mar 2014	19 Mar 2014	15 Apr 2014	26 Mar 2014	15 Apr 2014	27 Mar 2014
Duplicate D101	SE126027.056	LB054816	18 Mar 2014	19 Mar 2014	15 Apr 2014	26 Mar 2014	15 Apr 2014	27 Mar 2014
Metals in Water (Dissolve	d) by ICPOES						Method: ME-(AU)-[ENV]AN320/AN321
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
Rinsate R1	SE126027.043	LB054781	18 Mar 2014	19 Mar 2014	14 Sep 2014	25 Mar 2014	14 Sep 2014	26 Mar 2014

Method: ME-(AU)-[ENV]AN002

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH1 0.05-0.2	SE126027.001	LB054759	18 Mar 2014	19 Mar 2014	01 Apr 2014	25 Mar 2014	30 Mar 2014	26 Mar 2014
BH2 0.1-0.4	SE126027.002	LB054759	18 Mar 2014	19 Mar 2014	01 Apr 2014	25 Mar 2014	30 Mar 2014	27 Mar 2014
BH3 0-0.3	SE126027.003	LB054759	18 Mar 2014	19 Mar 2014	01 Apr 2014	25 Mar 2014	30 Mar 2014	26 Mar 2014
BH3 0.55-0.65	SE126027.004	LB054759	18 Mar 2014	19 Mar 2014	01 Apr 2014	25 Mar 2014	30 Mar 2014	26 Mar 2014

Moisture Content

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Moisture Content (continued)

Moisture Content (continued)							Method: I	ME-(AU)-[ENV]AN002
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH4 0-0.3	SE126027.005	LB054759	18 Mar 2014	19 Mar 2014	01 Apr 2014	25 Mar 2014	30 Mar 2014	26 Mar 2014
BH5 0-0.15	SE126027.006	LB054759	18 Mar 2014	19 Mar 2014	01 Apr 2014	25 Mar 2014	30 Mar 2014	27 Mar 2014
BH6 0-0.3	SE126027.007	LB054759	18 Mar 2014	19 Mar 2014	01 Apr 2014	25 Mar 2014	30 Mar 2014	26 Mar 2014
BH6 0.45-0.55	SE126027.008	LB054759	18 Mar 2014	19 Mar 2014	01 Apr 2014	25 Mar 2014	30 Mar 2014	26 Mar 2014
BH7 0-0.3	SE126027.009	LB054759	18 Mar 2014	19 Mar 2014	01 Apr 2014	25 Mar 2014	30 Mar 2014	26 Mar 2014
BH8 0.05-0.2	SE126027.010	LB054759	18 Mar 2014	19 Mar 2014	01 Apr 2014	25 Mar 2014	30 Mar 2014	27 Mar 2014
BH8 0.25-0.35	SE126027.011	LB054759	18 Mar 2014	19 Mar 2014	01 Apr 2014	25 Mar 2014	30 Mar 2014	26 Mar 2014
BH9 0.05-0.2	SE126027.012	LB054759	18 Mar 2014	19 Mar 2014	01 Apr 2014	25 Mar 2014	30 Mar 2014	27 Mar 2014
BH10 0-0.15	SE126027.013	LB054759	18 Mar 2014	19 Mar 2014	01 Apr 2014	25 Mar 2014	30 Mar 2014	26 Mar 2014
BH10 0.15-0.45	SE126027.014	LB054759	18 Mar 2014	19 Mar 2014	01 Apr 2014	25 Mar 2014	30 Mar 2014	26 Mar 2014
BH11 0-0.15	SE126027.015	LB054759	18 Mar 2014	19 Mar 2014	01 Apr 2014	25 Mar 2014	30 Mar 2014	27 Mar 2014
BH11 0.2-0.5	SE126027.016	LB054759	18 Mar 2014	19 Mar 2014	01 Apr 2014	25 Mar 2014	30 Mar 2014	26 Mar 2014
BH12 0-0.15	SE126027.017	LB054759	18 Mar 2014	19 Mar 2014	01 Apr 2014	25 Mar 2014	30 Mar 2014	26 Mar 2014
BH13 0-0.15	SE126027.018	LB054759	18 Mar 2014	19 Mar 2014	01 Apr 2014	25 Mar 2014	30 Mar 2014	27 Mar 2014
BH13 0.3-0.6	SE126027.019	LB054759	18 Mar 2014	19 Mar 2014	01 Apr 2014	25 Mar 2014	30 Mar 2014	26 Mar 2014
BH14 0-0.15	SE126027.020	LB054759	18 Mar 2014	19 Mar 2014	01 Apr 2014	25 Mar 2014	30 Mar 2014	27 Mar 2014
BH14 0.2-0.5	SE126027.021	LB054759	18 Mar 2014	19 Mar 2014	01 Apr 2014	25 Mar 2014	30 Mar 2014	26 Mar 2014
BH15 0-0.15	SE126027.022	LB054759	18 Mar 2014	19 Mar 2014	01 Apr 2014	25 Mar 2014	30 Mar 2014	27 Mar 2014
BH15 0.2-0.5	SE126027.023	LB054759	18 Mar 2014	19 Mar 2014	01 Apr 2014	25 Mar 2014	30 Mar 2014	26 Mar 2014
BH15 0.9-1.2	SE126027.024	LB054759	18 Mar 2014	19 Mar 2014	01 Apr 2014	25 Mar 2014	30 Mar 2014	26 Mar 2014
BH15 1.25-1.35	SE126027.025	LB054759	18 Mar 2014	19 Mar 2014	01 Apr 2014	25 Mar 2014	30 Mar 2014	26 Mar 2014
BH16 0-0.1	SE126027.026	LB054759	18 Mar 2014	19 Mar 2014	01 Apr 2014	25 Mar 2014	30 Mar 2014	27 Mar 2014
BH16 0.1-0.4	SE126027.027	LB054759	18 Mar 2014	19 Mar 2014	01 Apr 2014	25 Mar 2014	30 Mar 2014	27 Mar 2014
BH16 2.1-2.4	SE126027.028	LB054759	18 Mar 2014	19 Mar 2014	01 Apr 2014	25 Mar 2014	30 Mar 2014	26 Mar 2014
BH16 3.1-3.4	SE126027.029	LB054759	18 Mar 2014	19 Mar 2014	01 Apr 2014	25 Mar 2014	30 Mar 2014	27 Mar 2014
BH16 3.45-3.55	SE126027.030	LB054759	18 Mar 2014	19 Mar 2014	01 Apr 2014	25 Mar 2014	30 Mar 2014	26 Mar 2014
BH17 0-0.15	SE126027.031	LB054759	18 Mar 2014	19 Mar 2014	01 Apr 2014	25 Mar 2014	30 Mar 2014	27 Mar 2014
BH17 0.2-0.5	SE126027.032	LB054759	18 Mar 2014	19 Mar 2014	01 Apr 2014	25 Mar 2014	30 Mar 2014	26 Mar 2014
BH18 0-0.15	SE126027.033	LB054759	18 Mar 2014	19 Mar 2014	01 Apr 2014	25 Mar 2014	30 Mar 2014	27 Mar 2014
BH19 0-0.15	SE126027.034	LB054759	18 Mar 2014	19 Mar 2014	01 Apr 2014	25 Mar 2014	30 Mar 2014	27 Mar 2014
BH20 0-0.15	SE126027.035	LB054759	18 Mar 2014	19 Mar 2014	01 Apr 2014	25 Mar 2014	30 Mar 2014	27 Mar 2014
BH21 0.2-0.5	SE126027.036	LB054759	18 Mar 2014	19 Mar 2014	01 Apr 2014	25 Mar 2014	30 Mar 2014	26 Mar 2014
BH21 0.8-1.1	SE126027.037	LB054759	18 Mar 2014	19 Mar 2014	01 Apr 2014	25 Mar 2014	30 Mar 2014	27 Mar 2014
BH21 1.3-1.6	SE126027.038	LB054759	18 Mar 2014	19 Mar 2014	01 Apr 2014	25 Mar 2014	30 Mar 2014	26 Mar 2014
BH21 1.75-1.85	SE126027.039	LB054759	18 Mar 2014	19 Mar 2014	01 Apr 2014	25 Mar 2014	30 Mar 2014	26 Mar 2014
X1	SE126027.040	LB054759	18 Mar 2014	19 Mar 2014	01 Apr 2014	25 Mar 2014	30 Mar 2014	27 Mar 2014
X2	SE126027.041	LB054759	18 Mar 2014	19 Mar 2014	01 Apr 2014	25 Mar 2014	30 Mar 2014	27 Mar 2014
Х3	SE126027.042	LB054759	18 Mar 2014	19 Mar 2014	01 Apr 2014	25 Mar 2014	30 Mar 2014	26 Mar 2014
C1	SE126027.045	LB054759	18 Mar 2014	19 Mar 2014	01 Apr 2014	25 Mar 2014	30 Mar 2014	26 Mar 2014
C2	SE126027.046	LB054759	18 Mar 2014	19 Mar 2014	01 Apr 2014	25 Mar 2014	30 Mar 2014	26 Mar 2014
C3	SE126027.047	LB054759	18 Mar 2014	19 Mar 2014	01 Apr 2014	25 Mar 2014	30 Mar 2014	26 Mar 2014
C4	SE126027.048	LB054759	18 Mar 2014	19 Mar 2014	01 Apr 2014	25 Mar 2014	30 Mar 2014	26 Mar 2014
C5	SE126027.049	LB054759	18 Mar 2014	19 Mar 2014	01 Apr 2014	25 Mar 2014	30 Mar 2014	26 Mar 2014
C6	SE126027.050	LB054759	18 Mar 2014	19 Mar 2014	01 Apr 2014	25 Mar 2014	30 Mar 2014	26 Mar 2014
C7	SE126027.051	LB054759	18 Mar 2014	19 Mar 2014	01 Apr 2014	25 Mar 2014	30 Mar 2014	26 Mar 2014
C8	SE126027.052	LB054759	18 Mar 2014	19 Mar 2014	01 Apr 2014	25 Mar 2014	30 Mar 2014	26 Mar 2014
C9	SE126027.053	LB054759	18 Mar 2014	19 Mar 2014	01 Apr 2014	25 Mar 2014	30 Mar 2014	26 Mar 2014
C10	SE126027.054	LB054759	18 Mar 2014	19 Mar 2014	01 Apr 2014	25 Mar 2014	30 Mar 2014	26 Mar 2014
C11	SE126027.055	LB054759	18 Mar 2014	19 Mar 2014	01 Apr 2014	25 Mar 2014	30 Mar 2014	26 Mar 2014
Duplicate D101	SE126027.056	LB054759	18 Mar 2014	19 Mar 2014	01 Apr 2014	25 Mar 2014	30 Mar 2014	26 Mar 2014
BH21 0-0.15	SE126027.057	LB054759	18 Mar 2014	19 Mar 2014	01 Apr 2014	25 Mar 2014	30 Mar 2014	27 Mar 2014
OC Pesticides in Soil							Method: ME-(AU	-[ENV]AN400/AN420
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH1 0.05-0.2	SE126027.001	LB054726	18 Mar 2014	19 Mar 2014	01 Apr 2014	24 Mar 2014	03 May 2014	27 Mar 2014
BH3 0-0.3	SE126027.003	LB054726	18 Mar 2014	19 Mar 2014	01 Apr 2014	24 Mar 2014	03 May 2014	27 Mar 2014
BH4 0-0.3	SE126027.005	LB054726	18 Mar 2014	19 Mar 2014	01 Apr 2014	24 Mar 2014	03 May 2014	27 Mar 2014
BH6 0-0.3	SE126027.007	LB054726	18 Mar 2014	19 Mar 2014	01 Apr 2014	24 Mar 2014	03 May 2014	27 Mar 2014
BH7 0-0.3	SE126027.009	LB054726	18 Mar 2014	19 Mar 2014	01 Apr 2014	24 Mar 2014	03 May 2014	27 Mar 2014

BH10 0.15-0.45

SE126027.014

LB054726

18 Mar 2014

19 Mar 2014

01 Apr 2014

24 Mar 2014

03 May 2014

27 Mar 2014

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

OC Pesticides in Soil (continued)

OC Pesticides in Soil (continue	d)						Method: ME-(AU)-[ENV]AN400/AN420
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH11 0.2-0.5	SE126027.016	LB054726	18 Mar 2014	19 Mar 2014	01 Apr 2014	24 Mar 2014	03 May 2014	27 Mar 2014
BH13 0.3-0.6	SE126027.019	LB054726	18 Mar 2014	19 Mar 2014	01 Apr 2014	24 Mar 2014	03 May 2014	27 Mar 2014
BH14 0.2-0.5	SE126027.021	LB054726	18 Mar 2014	19 Mar 2014	01 Apr 2014	24 Mar 2014	03 May 2014	27 Mar 2014
BH15 0.2-0.5	SE126027.023	LB054726	18 Mar 2014	19 Mar 2014	01 Apr 2014	24 Mar 2014	03 May 2014	27 Mar 2014
BH15 0.9-1.2	SE126027.024	LB054726	18 Mar 2014	19 Mar 2014	01 Apr 2014	24 Mar 2014	03 May 2014	27 Mar 2014
BH16 2.1-2.4	SE126027.028	LB054726	18 Mar 2014	19 Mar 2014	01 Apr 2014	24 Mar 2014	03 May 2014	27 Mar 2014
BH17 0.2-0.5	SE126027.032	LB054726	18 Mar 2014	19 Mar 2014	01 Apr 2014	24 Mar 2014	03 May 2014	27 Mar 2014
BH21 0.2-0.5	SE126027.036	LB054727	18 Mar 2014	19 Mar 2014	01 Apr 2014	24 Mar 2014	03 May 2014	27 Mar 2014
BH21 1.3-1.6	SE126027.038	LB054727	18 Mar 2014	19 Mar 2014	01 Apr 2014	24 Mar 2014	03 May 2014	27 Mar 2014
X3	SE126027.042	LB054727	18 Mar 2014	19 Mar 2014	01 Apr 2014	24 Mar 2014	03 May 2014	27 Mar 2014
C1	SE126027.045	LB054727	18 Mar 2014	19 Mar 2014	01 Apr 2014	24 Mar 2014	03 May 2014	27 Mar 2014
C2	SE126027.046	LB054727	18 Mar 2014	19 Mar 2014	01 Apr 2014	24 Mar 2014	03 May 2014	27 Mar 2014
C3	SE126027.047	LB054727	18 Mar 2014	19 Mar 2014	01 Apr 2014	24 Mar 2014	03 May 2014	27 Mar 2014
C4	SE126027.048	LB054727	18 Mar 2014	19 Mar 2014	01 Apr 2014	24 Mar 2014	03 May 2014	27 Mar 2014
C5	SE126027.049	LB054727	18 Mar 2014	19 Mar 2014	01 Apr 2014	24 Mar 2014	03 May 2014	27 Mar 2014
C6	SE126027.050	LB054727	18 Mar 2014	19 Mar 2014	01 Apr 2014	24 Mar 2014	03 May 2014	27 Mar 2014
C7	SE126027.051	LB054727	18 Mar 2014	19 Mar 2014	01 Apr 2014	24 Mar 2014	03 May 2014	27 Mar 2014
C8	SE126027.052	LB054727	18 Mar 2014	19 Mar 2014	01 Apr 2014	24 Mar 2014	03 May 2014	27 Mar 2014
C9	SE126027.053	LB054727	18 Mar 2014	19 Mar 2014	01 Apr 2014	24 Mar 2014	03 May 2014	27 Mar 2014
C10	SE126027.054	LB054727	18 Mar 2014	19 Mar 2014	01 Apr 2014	24 Mar 2014	03 May 2014	27 Mar 2014
C11	SE126027.055	LB054727	18 Mar 2014	19 Mar 2014	01 Apr 2014	24 Mar 2014	03 May 2014	27 Mar 2014
Duplicate D101	SE126027.056	LB054727	18 Mar 2014	19 Mar 2014	01 Apr 2014	24 Mar 2014	03 May 2014	27 Mar 2014
OC Pesticides in Water							Method: ME-(AU)-[ENV]AN400/AN420
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
Rinsate R1	SE126027.043	LB054771	18 Mar 2014	19 Mar 2014	25 Mar 2014	25 Mar 2014	04 May 2014	27 Mar 2014

OP Pesticides in Soil

Method: ME-(AU)-IENVIAN400/AN420

							•	
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH1 0.05-0.2	SE126027.001	LB054726	18 Mar 2014	19 Mar 2014	01 Apr 2014	24 Mar 2014	03 May 2014	27 Mar 2014
BH3 0-0.3	SE126027.003	LB054726	18 Mar 2014	19 Mar 2014	01 Apr 2014	24 Mar 2014	03 May 2014	27 Mar 2014
BH4 0-0.3	SE126027.005	LB054726	18 Mar 2014	19 Mar 2014	01 Apr 2014	24 Mar 2014	03 May 2014	27 Mar 2014
BH6 0-0.3	SE126027.007	LB054726	18 Mar 2014	19 Mar 2014	01 Apr 2014	24 Mar 2014	03 May 2014	27 Mar 2014
BH7 0-0.3	SE126027.009	LB054726	18 Mar 2014	19 Mar 2014	01 Apr 2014	24 Mar 2014	03 May 2014	27 Mar 2014
BH10 0.15-0.45	SE126027.014	LB054726	18 Mar 2014	19 Mar 2014	01 Apr 2014	24 Mar 2014	03 May 2014	27 Mar 2014
BH11 0.2-0.5	SE126027.016	LB054726	18 Mar 2014	19 Mar 2014	01 Apr 2014	24 Mar 2014	03 May 2014	27 Mar 2014
BH13 0.3-0.6	SE126027.019	LB054726	18 Mar 2014	19 Mar 2014	01 Apr 2014	24 Mar 2014	03 May 2014	27 Mar 2014
BH14 0.2-0.5	SE126027.021	LB054726	18 Mar 2014	19 Mar 2014	01 Apr 2014	24 Mar 2014	03 May 2014	27 Mar 2014
BH15 0.2-0.5	SE126027.023	LB054726	18 Mar 2014	19 Mar 2014	01 Apr 2014	24 Mar 2014	03 May 2014	27 Mar 2014
BH15 0.9-1.2	SE126027.024	LB054726	18 Mar 2014	19 Mar 2014	01 Apr 2014	24 Mar 2014	03 May 2014	27 Mar 2014
BH16 2.1-2.4	SE126027.028	LB054726	18 Mar 2014	19 Mar 2014	01 Apr 2014	24 Mar 2014	03 May 2014	27 Mar 2014
BH17 0.2-0.5	SE126027.032	LB054726	18 Mar 2014	19 Mar 2014	01 Apr 2014	24 Mar 2014	03 May 2014	27 Mar 2014
BH21 0.2-0.5	SE126027.036	LB054727	18 Mar 2014	19 Mar 2014	01 Apr 2014	24 Mar 2014	03 May 2014	27 Mar 2014
BH21 1.3-1.6	SE126027.038	LB054727	18 Mar 2014	19 Mar 2014	01 Apr 2014	24 Mar 2014	03 May 2014	27 Mar 2014
X3	SE126027.042	LB054727	18 Mar 2014	19 Mar 2014	01 Apr 2014	24 Mar 2014	03 May 2014	27 Mar 2014
C1	SE126027.045	LB054727	18 Mar 2014	19 Mar 2014	01 Apr 2014	24 Mar 2014	03 May 2014	27 Mar 2014
C2	SE126027.046	LB054727	18 Mar 2014	19 Mar 2014	01 Apr 2014	24 Mar 2014	03 May 2014	27 Mar 2014
C3	SE126027.047	LB054727	18 Mar 2014	19 Mar 2014	01 Apr 2014	24 Mar 2014	03 May 2014	27 Mar 2014
C4	SE126027.048	LB054727	18 Mar 2014	19 Mar 2014	01 Apr 2014	24 Mar 2014	03 May 2014	27 Mar 2014
C5	SE126027.049	LB054727	18 Mar 2014	19 Mar 2014	01 Apr 2014	24 Mar 2014	03 May 2014	27 Mar 2014
C6	SE126027.050	LB054727	18 Mar 2014	19 Mar 2014	01 Apr 2014	24 Mar 2014	03 May 2014	27 Mar 2014
C7	SE126027.051	LB054727	18 Mar 2014	19 Mar 2014	01 Apr 2014	24 Mar 2014	03 May 2014	27 Mar 2014
C8	SE126027.052	LB054727	18 Mar 2014	19 Mar 2014	01 Apr 2014	24 Mar 2014	03 May 2014	27 Mar 2014
C9	SE126027.053	LB054727	18 Mar 2014	19 Mar 2014	01 Apr 2014	24 Mar 2014	03 May 2014	27 Mar 2014
C10	SE126027.054	LB054727	18 Mar 2014	19 Mar 2014	01 Apr 2014	24 Mar 2014	03 May 2014	27 Mar 2014
C11	SE126027.055	LB054727	18 Mar 2014	19 Mar 2014	01 Apr 2014	24 Mar 2014	03 May 2014	27 Mar 2014
Duplicate D101	SE126027.056	LB054727	18 Mar 2014	19 Mar 2014	01 Apr 2014	24 Mar 2014	03 May 2014	27 Mar 2014
OP Pesticides in Water							Method: ME-(AL	

```
Sample Name Sample No. QC Ref
```


SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or **Red** with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

OP Pesticides in Water (co	ontinued)						Method: ME-(AU)-[ENV]AN400/AN420
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
Rinsate R1	SE126027.043	LB054771	18 Mar 2014	19 Mar 2014	25 Mar 2014	25 Mar 2014	04 May 2014	27 Mar 2014
PAH (Polynuclear Aromati	ic Hydrocarbons) in Soil						Method: I	ME-(AU)-[ENV]AN420
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH1 0.05-0.2	SE126027.001	LB054726	18 Mar 2014	19 Mar 2014	01 Apr 2014	24 Mar 2014	03 May 2014	27 Mar 2014
BH3 0-0.3	SE126027.003	LB054726	18 Mar 2014	19 Mar 2014	01 Apr 2014	24 Mar 2014	03 May 2014	27 Mar 2014
BH4 0-0.3	SE126027.005	LB054726	18 Mar 2014	19 Mar 2014	01 Apr 2014	24 Mar 2014	03 May 2014	27 Mar 2014
BH6 0-0.3	SE126027.007	LB054726	18 Mar 2014	19 Mar 2014	01 Apr 2014	24 Mar 2014	03 May 2014	27 Mar 2014
BH7 0-0.3	SE126027.009	LB054726	18 Mar 2014	19 Mar 2014	01 Apr 2014	24 Mar 2014	03 May 2014	27 Mar 2014
BH10 0.15-0.45	SE126027.014	LB054726	18 Mar 2014	19 Mar 2014	01 Apr 2014	24 Mar 2014	03 May 2014	27 Mar 2014
BH11 0.2-0.5	SE126027.016	LB054726	18 Mar 2014	19 Mar 2014	01 Apr 2014	24 Mar 2014	03 May 2014	27 Mar 2014
BH13 0.3-0.6	SE126027.019	LB054726	18 Mar 2014	19 Mar 2014	01 Apr 2014	24 Mar 2014	03 May 2014	27 Mar 2014
BH14 0.2-0.5	SE126027.021	LB054726	18 Mar 2014	19 Mar 2014	01 Apr 2014	24 Mar 2014	03 May 2014	27 Mar 2014
BH15 0.2-0.5	SE126027.023	LB054726	18 Mar 2014	19 Mar 2014	01 Apr 2014	24 Mar 2014	03 May 2014	27 Mar 2014
BH15 0.9-1.2	SE126027.024	LB054726	18 Mar 2014	19 Mar 2014	01 Apr 2014	24 Mar 2014	03 May 2014	27 Mar 2014
BH16 2.1-2.4	SE126027.028	LB054726	18 Mar 2014	19 Mar 2014	01 Apr 2014	24 Mar 2014	03 May 2014	27 Mar 2014
BH17 0.2-0.5	SE126027.032	LB054726	18 Mar 2014	19 Mar 2014	01 Apr 2014	24 Mar 2014	03 May 2014	27 Mar 2014
BH21 0.2-0.5	SE126027.036	LB054727	18 Mar 2014	19 Mar 2014	01 Apr 2014	24 Mar 2014	03 May 2014	27 Mar 2014
BH21 1.3-1.6	SE126027.038	LB054727	18 Mar 2014	19 Mar 2014	01 Apr 2014	24 Mar 2014	03 May 2014	27 Mar 2014
X3	SE126027.042	LB054727	18 Mar 2014	19 Mar 2014	01 Apr 2014	24 Mar 2014	03 May 2014	27 Mar 2014
C1	SE126027.045	LB054727	18 Mar 2014	19 Mar 2014	01 Apr 2014	24 Mar 2014	03 May 2014	27 Mar 2014
C2	SE126027.046	LB054727	18 Mar 2014	19 Mar 2014	01 Apr 2014	24 Mar 2014	03 May 2014	27 Mar 2014
C3	SE126027.047	LB054727	18 Mar 2014	19 Mar 2014	01 Apr 2014	24 Mar 2014	03 May 2014	27 Mar 2014
C4	SE126027.048	LB054727	18 Mar 2014	19 Mar 2014	01 Apr 2014	24 Mar 2014	03 May 2014	27 Mar 2014
C5	SE126027.049	LB054727	18 Mar 2014	19 Mar 2014	01 Apr 2014	24 Mar 2014	03 May 2014	27 Mar 2014
C6	SE126027.050	LB054727	18 Mar 2014	19 Mar 2014	01 Apr 2014	24 Mar 2014	03 May 2014	27 Mar 2014
C7	SE126027.051	LB054727	18 Mar 2014	19 Mar 2014	01 Apr 2014	24 Mar 2014	03 May 2014	27 Mar 2014
C8	SE126027.052	LB054727	18 Mar 2014	19 Mar 2014	01 Apr 2014	24 Mar 2014	03 May 2014	27 Mar 2014
C9	SE126027.053	LB054727	18 Mar 2014	19 Mar 2014	01 Apr 2014	24 Mar 2014	03 May 2014	27 Mar 2014
C10	SE126027.054	LB054727	18 Mar 2014	19 Mar 2014	01 Apr 2014	24 Mar 2014	03 May 2014	27 Mar 2014
C11	SE126027.055	LB054727	18 Mar 2014	19 Mar 2014	01 Apr 2014	24 Mar 2014	03 May 2014	27 Mar 2014
Duplicate D101	SE126027.056	LB054727	18 Mar 2014	19 Mar 2014	01 Apr 2014	24 Mar 2014	03 May 2014	27 Mar 2014
PAH (Polynuclear Aromati	c Hydrocarbons) in Water						Method: I	ME-(AU)-[ENV]AN420
Sample Name	Sample No	OC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
Rinsate R1	SE126027.043	LB054771	18 Mar 2014	19 Mar 2014	25 Mar 2014	25 Mar 2014	04 May 2014	27 Mar 2014

PCBs in Soil							Method: ME-(AU)-[ENV]AN400/AN420
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH1 0.05-0.2	SE126027.001	LB054726	18 Mar 2014	19 Mar 2014	01 Apr 2014	24 Mar 2014	03 May 2014	27 Mar 2014
BH3 0-0.3	SE126027.003	LB054726	18 Mar 2014	19 Mar 2014	01 Apr 2014	24 Mar 2014	03 May 2014	27 Mar 2014
BH4 0-0.3	SE126027.005	LB054726	18 Mar 2014	19 Mar 2014	01 Apr 2014	24 Mar 2014	03 May 2014	27 Mar 2014
BH6 0-0.3	SE126027.007	LB054726	18 Mar 2014	19 Mar 2014	01 Apr 2014	24 Mar 2014	03 May 2014	27 Mar 2014
BH7 0-0.3	SE126027.009	LB054726	18 Mar 2014	19 Mar 2014	01 Apr 2014	24 Mar 2014	03 May 2014	27 Mar 2014
BH10 0.15-0.45	SE126027.014	LB054726	18 Mar 2014	19 Mar 2014	01 Apr 2014	24 Mar 2014	03 May 2014	27 Mar 2014
BH11 0.2-0.5	SE126027.016	LB054726	18 Mar 2014	19 Mar 2014	01 Apr 2014	24 Mar 2014	03 May 2014	27 Mar 2014
BH13 0.3-0.6	SE126027.019	LB054726	18 Mar 2014	19 Mar 2014	01 Apr 2014	24 Mar 2014	03 May 2014	27 Mar 2014
BH14 0.2-0.5	SE126027.021	LB054726	18 Mar 2014	19 Mar 2014	01 Apr 2014	24 Mar 2014	03 May 2014	27 Mar 2014
BH15 0.2-0.5	SE126027.023	LB054726	18 Mar 2014	19 Mar 2014	01 Apr 2014	24 Mar 2014	03 May 2014	27 Mar 2014
BH15 0.9-1.2	SE126027.024	LB054726	18 Mar 2014	19 Mar 2014	01 Apr 2014	24 Mar 2014	03 May 2014	27 Mar 2014
BH16 2.1-2.4	SE126027.028	LB054726	18 Mar 2014	19 Mar 2014	01 Apr 2014	24 Mar 2014	03 May 2014	27 Mar 2014
BH17 0.2-0.5	SE126027.032	LB054726	18 Mar 2014	19 Mar 2014	01 Apr 2014	24 Mar 2014	03 May 2014	27 Mar 2014
BH21 0.2-0.5	SE126027.036	LB054727	18 Mar 2014	19 Mar 2014	01 Apr 2014	24 Mar 2014	03 May 2014	27 Mar 2014
BH21 1.3-1.6	SE126027.038	LB054727	18 Mar 2014	19 Mar 2014	01 Apr 2014	24 Mar 2014	03 May 2014	27 Mar 2014
X3	SE126027.042	LB054727	18 Mar 2014	19 Mar 2014	01 Apr 2014	24 Mar 2014	03 May 2014	27 Mar 2014
C1	SE126027.045	LB054727	18 Mar 2014	19 Mar 2014	01 Apr 2014	24 Mar 2014	03 May 2014	27 Mar 2014
C2	SE126027.046	LB054727	18 Mar 2014	19 Mar 2014	01 Apr 2014	24 Mar 2014	03 May 2014	27 Mar 2014
C3	SE126027.047	LB054727	18 Mar 2014	19 Mar 2014	01 Apr 2014	24 Mar 2014	03 May 2014	27 Mar 2014
C4	SE126027.048	L B054727	18 Mar 2014	19 Mar 2014	01 Apr 2014	24 Mar 2014	03 May 2014	27 Mar 2014

HOLDING TIME SUMMARY

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

PCBs in Soil (continued)							Method: ME-(AU)	-[ENV]AN400/AN420
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
C5	SE126027.049	LB054727	18 Mar 2014	19 Mar 2014	01 Apr 2014	24 Mar 2014	03 May 2014	27 Mar 2014
C6	SE126027.050	LB054727	18 Mar 2014	19 Mar 2014	01 Apr 2014	24 Mar 2014	03 May 2014	27 Mar 2014
C7	SE126027.051	LB054727	18 Mar 2014	19 Mar 2014	01 Apr 2014	24 Mar 2014	03 May 2014	27 Mar 2014
C8	SE126027.052	LB054727	18 Mar 2014	19 Mar 2014	01 Apr 2014	24 Mar 2014	03 May 2014	27 Mar 2014
C9	SE126027.053	LB054727	18 Mar 2014	19 Mar 2014	01 Apr 2014	24 Mar 2014	03 May 2014	27 Mar 2014
C10	SE126027.054	LB054727	18 Mar 2014	19 Mar 2014	01 Apr 2014	24 Mar 2014	03 May 2014	27 Mar 2014
C11	SE126027.055	LB054727	18 Mar 2014	19 Mar 2014	01 Apr 2014	24 Mar 2014	03 May 2014	27 Mar 2014
Duplicate D101	SE126027.056	LB054727	18 Mar 2014	19 Mar 2014	01 Apr 2014	24 Mar 2014	03 May 2014	27 Mar 2014
PCBs in Water							Method: ME-(AU)	-[ENV]AN400/AN420

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
Rinsate R1	SE126027.043	LB054771	18 Mar 2014	19 Mar 2014	25 Mar 2014	25 Mar 2014	04 May 2014	27 Mar 2014

pH in soil (1:5)							Method: I	ME-(AU)-[ENV]AN101
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH1 0.05-0.2	SE126027.001	LB054755	18 Mar 2014	19 Mar 2014	25 Mar 2014	25 Mar 2014	26 Mar 2014	25 Mar 2014
BH3 0.55-0.65	SE126027.004	LB054755	18 Mar 2014	19 Mar 2014	25 Mar 2014	25 Mar 2014	26 Mar 2014	25 Mar 2014
BH4 0-0.3	SE126027.005	LB054755	18 Mar 2014	19 Mar 2014	25 Mar 2014	25 Mar 2014	26 Mar 2014	25 Mar 2014
BH6 0.45-0.55	SE126027.008	LB054755	18 Mar 2014	19 Mar 2014	25 Mar 2014	25 Mar 2014	26 Mar 2014	25 Mar 2014
BH7 0-0.3	SE126027.009	LB054755	18 Mar 2014	19 Mar 2014	25 Mar 2014	25 Mar 2014	26 Mar 2014	25 Mar 2014
BH8 0.25-0.35	SE126027.011	LB054755	18 Mar 2014	19 Mar 2014	25 Mar 2014	25 Mar 2014	26 Mar 2014	25 Mar 2014
BH10 0-0.15	SE126027.013	LB054755	18 Mar 2014	19 Mar 2014	25 Mar 2014	25 Mar 2014	26 Mar 2014	25 Mar 2014
BH12 0-0.15	SE126027.017	LB054755	18 Mar 2014	19 Mar 2014	25 Mar 2014	25 Mar 2014	26 Mar 2014	25 Mar 2014
BH16 2.1-2.4	SE126027.028	LB054755	18 Mar 2014	19 Mar 2014	25 Mar 2014	25 Mar 2014	26 Mar 2014	25 Mar 2014
BH17 0.2-0.5	SE126027.032	LB054755	18 Mar 2014	19 Mar 2014	25 Mar 2014	25 Mar 2014	26 Mar 2014	25 Mar 2014
BH21 0.2-0.5	SE126027.036	LB054755	18 Mar 2014	19 Mar 2014	25 Mar 2014	25 Mar 2014	26 Mar 2014	25 Mar 2014
BH21 1.3-1.6	SE126027.038	LB054755	18 Mar 2014	19 Mar 2014	25 Mar 2014	25 Mar 2014	26 Mar 2014	25 Mar 2014

TOC in Soll							Method: M	ME-(AU)-[ENV]AN188
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH1 0.05-0.2	SE126027.001	LB054803	18 Mar 2014	19 Mar 2014	25 Mar 2014	25 Mar 2014	25 Mar 2014	25 Mar 2014
BH3 0.55-0.65	SE126027.004	LB054803	18 Mar 2014	19 Mar 2014	25 Mar 2014	25 Mar 2014	25 Mar 2014	25 Mar 2014
BH4 0-0.3	SE126027.005	LB054803	18 Mar 2014	19 Mar 2014	25 Mar 2014	25 Mar 2014	25 Mar 2014	25 Mar 2014
BH6 0.45-0.55	SE126027.008	LB054803	18 Mar 2014	19 Mar 2014	25 Mar 2014	25 Mar 2014	25 Mar 2014	25 Mar 2014
BH7 0-0.3	SE126027.009	LB054803	18 Mar 2014	19 Mar 2014	25 Mar 2014	25 Mar 2014	25 Mar 2014	25 Mar 2014
BH8 0.25-0.35	SE126027.011	LB054803	18 Mar 2014	19 Mar 2014	25 Mar 2014	25 Mar 2014	25 Mar 2014	25 Mar 2014
BH10 0-0.15	SE126027.013	LB054803	18 Mar 2014	19 Mar 2014	25 Mar 2014	25 Mar 2014	25 Mar 2014	25 Mar 2014
BH12 0-0.15	SE126027.017	LB054803	18 Mar 2014	19 Mar 2014	25 Mar 2014	25 Mar 2014	25 Mar 2014	25 Mar 2014
BH16 2.1-2.4	SE126027.028	LB054803	18 Mar 2014	19 Mar 2014	25 Mar 2014	25 Mar 2014	25 Mar 2014	25 Mar 2014
BH17 0.2-0.5	SE126027.032	LB054803	18 Mar 2014	19 Mar 2014	25 Mar 2014	25 Mar 2014	25 Mar 2014	25 Mar 2014
BH21 0.2-0.5	SE126027.036	LB054803	18 Mar 2014	19 Mar 2014	25 Mar 2014	25 Mar 2014	25 Mar 2014	25 Mar 2014

19 Mar 2014

25 Mar 2014

25 Mar 2014

25 Mar 2014

BH21 1.3-1.6 SE126027.038

Total Cyanide in soil by D	iscrete Analyser (Aquakem)					Method: ME-(AU)-[ENV]AN077/AN287
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
C1	SE126027.045	LB054825	18 Mar 2014	19 Mar 2014	01 Apr 2014	26 Mar 2014	01 Apr 2014	27 Mar 2014
C2	SE126027.046	LB054825	18 Mar 2014	19 Mar 2014	01 Apr 2014	26 Mar 2014	01 Apr 2014	27 Mar 2014
C3	SE126027.047	LB054825	18 Mar 2014	19 Mar 2014	01 Apr 2014	26 Mar 2014	01 Apr 2014	27 Mar 2014
C8	SE126027.052	LB054825	18 Mar 2014	19 Mar 2014	01 Apr 2014	26 Mar 2014	01 Apr 2014	27 Mar 2014
C9	SE126027.053	LB054825	18 Mar 2014	19 Mar 2014	01 Apr 2014	26 Mar 2014	01 Apr 2014	27 Mar 2014
C10	SE126027.054	LB054825	18 Mar 2014	19 Mar 2014	01 Apr 2014	26 Mar 2014	01 Apr 2014	27 Mar 2014
C11	SE126027.055	LB054825	18 Mar 2014	19 Mar 2014	01 Apr 2014	26 Mar 2014	01 Apr 2014	27 Mar 2014
Duplicate D101	SE126027.056	LB054825	18 Mar 2014	19 Mar 2014	01 Apr 2014	26 Mar 2014	01 Apr 2014	27 Mar 2014
Total Cyanide in water by	Discrete Analyser (Aquake	im)					Method: ME-(AU)-[ENV]AN077/AN287
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
Rinsate R1	SE126027.043	LB054820	18 Mar 2014	19 Mar 2014	01 Apr 2014	26 Mar 2014	01 Apr 2014	26 Mar 2014

Total Phenolics in Soil

LB054803

18 Mar 2014

Sample Name	Sample No.	QC Ref

Method: ME-(AU)-[ENV]AN289

25 Mar 2014

HOLDING TIME SUMMARY

Method: ME-(AU)-[ENV]AN040/AN320

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Total Phenolics in Soil (continued)

Total Phenolics in Soil (continued) Method: ME-(AU)-[ENV]AN289									
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed	
C1	SE126027.045	LB054826	18 Mar 2014	19 Mar 2014	01 Apr 2014	26 Mar 2014	01 Apr 2014	27 Mar 2014	
C2	SE126027.046	LB054826	18 Mar 2014	19 Mar 2014	01 Apr 2014	26 Mar 2014	01 Apr 2014	27 Mar 2014	
C3	SE126027.047	LB054826	18 Mar 2014	19 Mar 2014	01 Apr 2014	26 Mar 2014	01 Apr 2014	27 Mar 2014	
C8	SE126027.052	LB054826	18 Mar 2014	19 Mar 2014	01 Apr 2014	26 Mar 2014	01 Apr 2014	27 Mar 2014	
C9	SE126027.053	LB054826	18 Mar 2014	19 Mar 2014	01 Apr 2014	26 Mar 2014	01 Apr 2014	27 Mar 2014	
C10	SE126027.054	LB054826	18 Mar 2014	19 Mar 2014	01 Apr 2014	26 Mar 2014	01 Apr 2014	27 Mar 2014	
C11	SE126027.055	LB054826	18 Mar 2014	19 Mar 2014	01 Apr 2014	26 Mar 2014	01 Apr 2014	27 Mar 2014	
Duplicate D101	SE126027.056	LB054826	18 Mar 2014	19 Mar 2014	01 Apr 2014	26 Mar 2014	01 Apr 2014	27 Mar 2014	
Total Phenolics in Water							Method: I	ME-(AU)-[ENV]AN289	

Total Phenolics in Water

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
Rinsate R1	SE126027.043	LB054764	18 Mar 2014	19 Mar 2014	15 Apr 2014	25 Mar 2014	15 Apr 2014	25 Mar 2014

Total Recoverable Metals in Soil by ICPOES from EPA 200.8 Digest

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH3 0.55-0.65	SE126027.004	LB054811	18 Mar 2014	19 Mar 2014	14 Sep 2014	26 Mar 2014	14 Sep 2014	26 Mar 2014
BH6 0.45-0.55	SE126027.008	LB054811	18 Mar 2014	19 Mar 2014	14 Sep 2014	26 Mar 2014	14 Sep 2014	26 Mar 2014
BH8 0.25-0.35	SE126027.011	LB054811	18 Mar 2014	19 Mar 2014	14 Sep 2014	26 Mar 2014	14 Sep 2014	26 Mar 2014
BH15 1.25-1.35	SE126027.025	LB054811	18 Mar 2014	19 Mar 2014	14 Sep 2014	26 Mar 2014	14 Sep 2014	26 Mar 2014
BH16 3.45-3.55	SE126027.030	LB054811	18 Mar 2014	19 Mar 2014	14 Sep 2014	26 Mar 2014	14 Sep 2014	26 Mar 2014
BH21 1.75-1.85	SE126027.039	LB054811	18 Mar 2014	19 Mar 2014	14 Sep 2014	26 Mar 2014	14 Sep 2014	26 Mar 2014
C1	SE126027.045	LB054812	18 Mar 2014	19 Mar 2014	14 Sep 2014	26 Mar 2014	14 Sep 2014	27 Mar 2014
C2	SE126027.046	LB054812	18 Mar 2014	19 Mar 2014	14 Sep 2014	26 Mar 2014	14 Sep 2014	27 Mar 2014
C3	SE126027.047	LB054812	18 Mar 2014	19 Mar 2014	14 Sep 2014	26 Mar 2014	14 Sep 2014	27 Mar 2014
C4	SE126027.048	LB054812	18 Mar 2014	19 Mar 2014	14 Sep 2014	26 Mar 2014	14 Sep 2014	27 Mar 2014
C5	SE126027.049	LB054812	18 Mar 2014	19 Mar 2014	14 Sep 2014	26 Mar 2014	14 Sep 2014	27 Mar 2014
C6	SE126027.050	LB054812	18 Mar 2014	19 Mar 2014	14 Sep 2014	26 Mar 2014	14 Sep 2014	27 Mar 2014
C7	SE126027.051	LB054812	18 Mar 2014	19 Mar 2014	14 Sep 2014	26 Mar 2014	14 Sep 2014	27 Mar 2014
C8	SE126027.052	LB054812	18 Mar 2014	19 Mar 2014	14 Sep 2014	26 Mar 2014	14 Sep 2014	27 Mar 2014
C9	SE126027.053	LB054812	18 Mar 2014	19 Mar 2014	14 Sep 2014	26 Mar 2014	14 Sep 2014	27 Mar 2014
C10	SE126027.054	LB054812	18 Mar 2014	19 Mar 2014	14 Sep 2014	26 Mar 2014	14 Sep 2014	27 Mar 2014
C11	SE126027.055	LB054812	18 Mar 2014	19 Mar 2014	14 Sep 2014	26 Mar 2014	14 Sep 2014	27 Mar 2014
Duplicate D101	SE126027.056	LB054812	18 Mar 2014	19 Mar 2014	14 Sep 2014	26 Mar 2014	14 Sep 2014	27 Mar 2014

TRH (Total Recoverable Hydrocarbons) in Soil Method: ME-(AU)-[E								ME-(AU)-[ENV]AN403
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH1 0.05-0.2	SE126027.001	LB054726	18 Mar 2014	19 Mar 2014	01 Apr 2014	24 Mar 2014	03 May 2014	27 Mar 2014
BH3 0-0.3	SE126027.003	LB054726	18 Mar 2014	19 Mar 2014	01 Apr 2014	24 Mar 2014	03 May 2014	27 Mar 2014
BH4 0-0.3	SE126027.005	LB054726	18 Mar 2014	19 Mar 2014	01 Apr 2014	24 Mar 2014	03 May 2014	27 Mar 2014
BH6 0-0.3	SE126027.007	LB054726	18 Mar 2014	19 Mar 2014	01 Apr 2014	24 Mar 2014	03 May 2014	27 Mar 2014
BH7 0-0.3	SE126027.009	LB054726	18 Mar 2014	19 Mar 2014	01 Apr 2014	24 Mar 2014	03 May 2014	27 Mar 2014
BH10 0.15-0.45	SE126027.014	LB054726	18 Mar 2014	19 Mar 2014	01 Apr 2014	24 Mar 2014	03 May 2014	27 Mar 2014
BH11 0.2-0.5	SE126027.016	LB054726	18 Mar 2014	19 Mar 2014	01 Apr 2014	24 Mar 2014	03 May 2014	27 Mar 2014
BH13 0.3-0.6	SE126027.019	LB054726	18 Mar 2014	19 Mar 2014	01 Apr 2014	24 Mar 2014	03 May 2014	27 Mar 2014
BH14 0.2-0.5	SE126027.021	LB054726	18 Mar 2014	19 Mar 2014	01 Apr 2014	24 Mar 2014	03 May 2014	27 Mar 2014
BH15 0.2-0.5	SE126027.023	LB054726	18 Mar 2014	19 Mar 2014	01 Apr 2014	24 Mar 2014	03 May 2014	27 Mar 2014
BH15 0.9-1.2	SE126027.024	LB054726	18 Mar 2014	19 Mar 2014	01 Apr 2014	24 Mar 2014	03 May 2014	27 Mar 2014
BH16 2.1-2.4	SE126027.028	LB054726	18 Mar 2014	19 Mar 2014	01 Apr 2014	24 Mar 2014	03 May 2014	27 Mar 2014
BH17 0.2-0.5	SE126027.032	LB054726	18 Mar 2014	19 Mar 2014	01 Apr 2014	24 Mar 2014	03 May 2014	27 Mar 2014
BH21 0.2-0.5	SE126027.036	LB054727	18 Mar 2014	19 Mar 2014	01 Apr 2014	24 Mar 2014	03 May 2014	27 Mar 2014
BH21 1.3-1.6	SE126027.038	LB054727	18 Mar 2014	19 Mar 2014	01 Apr 2014	24 Mar 2014	03 May 2014	27 Mar 2014
X3	SE126027.042	LB054727	18 Mar 2014	19 Mar 2014	01 Apr 2014	24 Mar 2014	03 May 2014	27 Mar 2014
C1	SE126027.045	LB054727	18 Mar 2014	19 Mar 2014	01 Apr 2014	24 Mar 2014	03 May 2014	27 Mar 2014
C2	SE126027.046	LB054727	18 Mar 2014	19 Mar 2014	01 Apr 2014	24 Mar 2014	03 May 2014	27 Mar 2014
C3	SE126027.047	LB054727	18 Mar 2014	19 Mar 2014	01 Apr 2014	24 Mar 2014	03 May 2014	27 Mar 2014
C4	SE126027.048	LB054727	18 Mar 2014	19 Mar 2014	01 Apr 2014	24 Mar 2014	03 May 2014	27 Mar 2014
C5	SE126027.049	LB054727	18 Mar 2014	19 Mar 2014	01 Apr 2014	24 Mar 2014	03 May 2014	27 Mar 2014
C6	SE126027.050	LB054727	18 Mar 2014	19 Mar 2014	01 Apr 2014	24 Mar 2014	03 May 2014	27 Mar 2014
C7	SE126027.051	LB054727	18 Mar 2014	19 Mar 2014	01 Apr 2014	24 Mar 2014	03 May 2014	27 Mar 2014
C8	SE126027.052	LB054727	18 Mar 2014	19 Mar 2014	01 Apr 2014	24 Mar 2014	03 May 2014	27 Mar 2014

HOLDING TIME SUMMARY

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

TRH (Total Recoverable Hydrocarbons) in Soil (continued) Method: ME-(AU)-[ENV]AN403 Analysis Due Analysed Sample Name Sample No. QC Ref Sampled Received Extraction Due Extracted C9 SE126027.053 LB054727 18 Mar 2014 19 Mar 2014 01 Apr 2014 24 Mar 2014 03 May 2014 27 Mar 2014 C10 SE126027.054 19 Mar 2014 01 Apr 2014 24 Mar 2014 27 Mar 2014 LB054727 18 Mar 2014 03 May 2014 C11 SE126027.055 LB054727 18 Mar 2014 19 Mar 2014 01 Apr 2014 24 Mar 2014 03 May 2014 27 Mar 2014 Duplicate D101 SE126027.056 LB054727 18 Mar 2014 19 Mar 2014 01 Apr 2014 24 Mar 2014 03 May 2014 27 Mar 2014 TRH (Total Recoverable Hydrocarbons) in Water Method: ME-(AU)-[ENV]AN403 Analysis Due Analysed Sampled Sample Name Sample No. QC Ref Received Extraction Due Extracted Rinsate R1 SE126027.043 LB054771 18 Mar 2014 19 Mar 2014 25 Mar 2014 25 Mar 2014 04 May 2014 27 Mar 2014

VOC's in Soil							Method: ME-(AU)-[ENV]AN433/AN434
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH1 0.05-0.2	SE126027.001	LB054731	18 Mar 2014	19 Mar 2014	01 Apr 2014	24 Mar 2014	03 May 2014	27 Mar 2014
BH4 0-0.3	SE126027.005	LB054731	18 Mar 2014	19 Mar 2014	01 Apr 2014	24 Mar 2014	03 May 2014	27 Mar 2014
BH7 0-0.3	SE126027.009	LB054731	18 Mar 2014	19 Mar 2014	01 Apr 2014	24 Mar 2014	03 May 2014	27 Mar 2014
BH10 0.15-0.45	SE126027.014	LB054731	18 Mar 2014	19 Mar 2014	01 Apr 2014	24 Mar 2014	03 May 2014	27 Mar 2014
BH13 0.3-0.6	SE126027.019	LB054731	18 Mar 2014	19 Mar 2014	01 Apr 2014	24 Mar 2014	03 May 2014	27 Mar 2014
BH16 2.1-2.4	SE126027.028	LB054731	18 Mar 2014	19 Mar 2014	01 Apr 2014	24 Mar 2014	03 May 2014	27 Mar 2014
BH17 0.2-0.5	SE126027.032	LB054731	18 Mar 2014	19 Mar 2014	01 Apr 2014	24 Mar 2014	03 May 2014	27 Mar 2014
BH21 0.2-0.5	SE126027.036	LB054731	18 Mar 2014	19 Mar 2014	01 Apr 2014	24 Mar 2014	03 May 2014	27 Mar 2014
BH21 1.3-1.6	SE126027.038	LB054731	18 Mar 2014	19 Mar 2014	01 Apr 2014	24 Mar 2014	03 May 2014	27 Mar 2014
X3	SE126027.042	LB054731	18 Mar 2014	19 Mar 2014	01 Apr 2014	24 Mar 2014	03 May 2014	27 Mar 2014
Tripspike TS1	SE126027.044	LB054731	18 Mar 2014	19 Mar 2014	01 Apr 2014	24 Mar 2014	03 May 2014	27 Mar 2014
VOCs in Water							Method: ME-(AU)-[ENV]AN433/AN434
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
Rinsate R1	SE126027 043	L B054778	18 Mar 2014	19 Mar 2014	25 Mar 2014	25 Mar 2014	04 May 2014	27 Mar 2014

Volatile Petroleum Hydrocarbons in Soil

Method: ME-(AU)-[ENV]AN433/AN434/AN410

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH1 0.05-0.2	SE126027.001	LB054731	18 Mar 2014	19 Mar 2014	01 Apr 2014	24 Mar 2014	03 May 2014	27 Mar 2014
BH4 0-0.3	SE126027.005	LB054731	18 Mar 2014	19 Mar 2014	01 Apr 2014	24 Mar 2014	03 May 2014	27 Mar 2014
BH7 0-0.3	SE126027.009	LB054731	18 Mar 2014	19 Mar 2014	01 Apr 2014	24 Mar 2014	03 May 2014	27 Mar 2014
BH10 0.15-0.45	SE126027.014	LB054731	18 Mar 2014	19 Mar 2014	01 Apr 2014	24 Mar 2014	03 May 2014	27 Mar 2014
BH13 0.3-0.6	SE126027.019	LB054731	18 Mar 2014	19 Mar 2014	01 Apr 2014	24 Mar 2014	03 May 2014	27 Mar 2014
BH16 2.1-2.4	SE126027.028	LB054731	18 Mar 2014	19 Mar 2014	01 Apr 2014	24 Mar 2014	03 May 2014	27 Mar 2014
BH17 0.2-0.5	SE126027.032	LB054731	18 Mar 2014	19 Mar 2014	01 Apr 2014	24 Mar 2014	03 May 2014	27 Mar 2014
BH21 0.2-0.5	SE126027.036	LB054731	18 Mar 2014	19 Mar 2014	01 Apr 2014	24 Mar 2014	03 May 2014	27 Mar 2014
BH21 1.3-1.6	SE126027.038	LB054731	18 Mar 2014	19 Mar 2014	01 Apr 2014	24 Mar 2014	03 May 2014	27 Mar 2014
X3	SE126027.042	LB054731	18 Mar 2014	19 Mar 2014	01 Apr 2014	24 Mar 2014	03 May 2014	27 Mar 2014
Tripspike TS1	SE126027.044	LB054731	18 Mar 2014	19 Mar 2014	01 Apr 2014	24 Mar 2014	03 May 2014	27 Mar 2014
Volatile Petroleum Hydrod	arbons in Water						Method: ME-(AU)-[ENV]	AN433/AN434/AN410
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
Rinsate R1	SE126027.043	LB054778	18 Mar 2014	19 Mar 2014	25 Mar 2014	25 Mar 2014	04 May 2014	27 Mar 2014

Method: ME-(AU)-[ENV]AN400/AN420

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

OC Pesticides in Soil Method: ME-(AU)-[ENV]AN400/AN420 Parameter Sample Name Criteria Recovery % Sample Number Units Tetrachloro-m-xylene (TCMX) (Surrogate) C1 SE126027.045 % 60 - 130% 113 C2 SE126027.046 % 60 - 130% 109 C3 SE126027.047 113 % 60 - 130% C4 SE126027.048 % 60 - 130% 111 C5 SE126027.049 % 60 - 130% 111 C6 SE126027.050 60 - 130% 110 % C7 SE126027.051 % 60 - 130% 112 C8 SE126027.052 60 - 130% 110 % C9 SE126027.053 107 % 60 - 130% C10 SE126027.054 % 60 - 130% 116 C11 SE126027.055 60 - 130% 117 % Duplicate D101 SE126027.056 60 - 130% % 116 Method: ME-(AU)-[ENV]AN400/AN420 OC Pesticides in Water Criteria Recovery % Parameter Sample Name Sample Number Units

Tetrachloro-m-xylene (TCMX) (Surrogate) Rinsate R1 SE126027.043 40 - 130% 73 %

OP Pesticides in Soil

Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
2-fluorobiphenyl (Surrogate)	C1	SE126027.045	%	60 - 130%	98
	C2	SE126027.046	%	60 - 130%	86
	C3	SE126027.047	%	60 - 130%	92
	C4	SE126027.048	%	60 - 130%	90
	C5	SE126027.049	%	60 - 130%	88
	C6	SE126027.050	%	60 - 130%	90
	C7	SE126027.051	%	60 - 130%	88
	C8	SE126027.052	%	60 - 130%	86
	C9	SE126027.053	%	60 - 130%	90
	C10	SE126027.054	%	60 - 130%	86
	C11	SE126027.055	%	60 - 130%	88
	Duplicate D101	SE126027.056	%	60 - 130%	92
d14-p-terphenyl (Surrogate)	C1	SE126027.045	%	60 - 130%	118
	C2	SE126027.046	%	60 - 130%	100
	C3	SE126027.047	%	60 - 130%	98
	C4	SE126027.048	%	60 - 130%	102
	C5	SE126027.049	%	60 - 130%	96
	C6	SE126027.050	%	60 - 130%	104
	C7	SE126027.051	%	60 - 130%	108
	C8	SE126027.052	%	60 - 130%	70
	C9	SE126027.053	%	60 - 130%	84
	C10	SE126027.054	%	60 - 130%	98
	C11	SE126027.055	%	60 - 130%	104
	Duplicate D101	SE126027.056	%	60 - 130%	106
OP Pesticides in Water				Method: ME-(AU)-[F	ENVJAN400/AN420

OP Pesticides in Water

Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
2-fluorobiphenyl (Surrogate)	Rinsate R1	SE126027.043	%	40 - 130%	70
d14-p-terphenyl (Surrogate)	Rinsate R1	SE126027.043	%	40 - 130%	100

PAH (Polynuclear Aromatic Hydrocarbons) in Soil

Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
2-fluorobiphenyl (Surrogate)	BH1 0.05-0.2	SE126027.001	%	60 - 130%	84
	BH3 0-0.3	SE126027.003	%	60 - 130%	78
	BH4 0-0.3	SE126027.005	%	60 - 130%	80
	BH6 0-0.3	SE126027.007	%	60 - 130%	80
	BH7 0-0.3	SE126027.009	%	60 - 130%	78
	BH10 0.15-0.45	SE126027.014	%	60 - 130%	80
	BH11 0.2-0.5	SE126027.016	%	60 - 130%	80
	BH13 0.3-0.6	SE126027.019	%	60 - 130%	82
	BH14 0.2-0.5	SE126027.021	%	60 - 130%	78
	BH15 0.2-0.5	SE126027.023	%	60 - 130%	74

Method: ME-(AU)-[ENV]AN420

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

PAH (Polynuclear Aromatic Hydrocarbons) in Soil (continued)				Method: M	E-(AU)-[ENV]AN420
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
2-fluorobiphenyl (Surrogate)	BH15 0.9-1.2	SE126027.024	%	60 - 130%	80
	BH16 2.1-2.4	SE126027.028	%	60 - 130%	84
	BH17 0.2-0.5	SE126027.032	%	60 - 130%	86
	BH21 0.2-0.5	SE126027.036	%	60 - 130%	82
	BH21 1.3-1.6	SE126027.038	%	60 - 130%	86
	X3	SE126027.042	%	60 - 130%	82
d14-p-terphenyl (Surrogate)	BH1 0.05-0.2	SE126027.001	%	60 - 130%	94
	BH3 0-0.3	SE126027.003	%	60 - 130%	86
	BH4 0-0.3	SE126027.005	%	60 - 130%	88
	BH6 0-0.3	SE126027.007	%	60 - 130%	88
	BH7 0-0.3	SE126027.009	%	60 - 130%	92
	BH10 0.15-0.45	SE126027.014	%	60 - 130%	74
	BH11 0.2-0.5	SE126027.016	%	60 - 130%	82
	BH13 0.3-0.6	SE126027.019	%	60 - 130%	94
	BH14 0.2-0.5	SE126027.021	%	60 - 130%	78
	BH15 0.2-0.5	SE126027.023	%	60 - 130%	74
	BH15 0.9-1.2	SE126027.024	%	60 - 130%	80
	BH16 2.1-2.4	SE126027.028	%	60 - 130%	98
	BH17 0.2-0.5	SE126027.032	%	60 - 130%	98
	BH21 0.2-0.5	SE126027.036	%	60 - 130%	86
	BH21 1.3-1.6	SE126027.038	%	60 - 130%	98
	X3	SE126027.042	%	60 - 130%	96
d5-nitrobenzene (Surrogate)	BH1 0.05-0.2	SE126027.001	%	60 - 130%	86
	BH3 0-0.3	SE126027.003	%	60 - 130%	78
	BH4 0-0.3	SE126027.005	%	60 - 130%	80
	BH6 0-0.3	SE126027.007	%	60 - 130%	82
	BH7 0-0.3	SE126027.009	%	60 - 130%	80
	BH10 0.15-0.45	SE126027.014	%	60 - 130%	76
	BH11 0.2-0.5	SE126027.016	%	60 - 130%	78
	BH13 0.3-0.6	SE126027.019	%	60 - 130%	84
	BH14 0.2-0.5	SE126027.021	%	60 - 130%	74
	BH15 0.2-0.5	SE126027.023	%	60 - 130%	74
	BH15 0.9-1.2	SE126027.024	%	60 - 130%	78
	BH16 2.1-2.4	SE126027.028	%	60 - 130%	82
	BH17 0.2-0.5	SE126027.032	%	60 - 130%	84
	BH21 0.2-0.5	SE126027.036	%	60 - 130%	82
	BH21 1.3-1.6	SE126027.038	%	60 - 130%	84
	X3	SE126027.042	%	60 - 130%	84
PAH (Polynuclear Aromatic Hydrocarbons) in Water				Method: M	E-(AU)-[ENV]AN420
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
2-fluorobiphenyl (Surrogate)	Rinsate R1	SE126027.043	%	40 - 130%	70
d14-p-terphenyl (Surrogate)	Rinsate R1	SE126027.043	%	40 - 130%	100
d5-nitrobenzene (Surrogate)	Rinsate R1	SE126027.043	%	40 - 130%	70
PCBs in Soll				Method: ME-(AU)-	[ENV]AN400/AN420
Parameter	Sample Name	Sample Numbe <u>r</u>	Units	Criteria	Recovery <u>%</u>
Tetrachloro-m-xylene (TCMX) (Surrogate)	C1	SE126027.045	%	60 - 130%	113
	C2	SE126027.046	%	60 - 130%	109
		SE 436037 047	0/	60 420%	442

Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
PCBs in Water				Method: ME-(AU)-[ENVJAN400/AN420
	Duplicate D101	SE126027.056	%	60 - 130%	116
	C11	SE126027.055	%	60 - 130%	117
	C10	SE126027.054	%	60 - 130%	116
	<u>C9</u>	SE126027.053	%	60 - 130%	107
	C8	SE126027.052	%	60 - 130%	110
	<u>C3</u>	SE126027.047	%	60 - 130%	113

SE126027.043

%

40 - 130%

Rinsate R1

Tetrachloro-m-xylene (Surrogate)

73

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

VOC's in Soll				Method: ME-(AU)-	[ENV]AN433/AN434
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Bromofluorobenzene (Surrogate)	BH1 0.05-0.2	SE126027.001	%	60 - 130%	92
	BH4 0-0.3	SE126027.005	%	60 - 130%	78
	BH7 0-0.3	SE126027.009	%	60 - 130%	81
	BH10 0.15-0.45	SE126027.014	%	60 - 130%	71
	BH13 0.3-0.6	SE126027.019	%	60 - 130%	81
	BH16 2.1-2.4	SE126027.028	%	60 - 130%	96
	BH17 0.2-0.5	SE126027.032	%	60 - 130%	93
	BH21 0.2-0.5	SE126027.036	%	60 - 130%	94
	BH21 1.3-1.6	SE126027.038	%	60 - 130%	80
	X3	SE126027.042	%	60 - 130%	85
	Tripspike TS1	SE126027.044	%	60 - 130%	116
d4-1,2-dichloroethane (Surrogate)	BH1 0.05-0.2	SE126027.001	%	60 - 130%	85
	BH4 0-0.3	SE126027.005	%	60 - 130%	80
	BH7 0-0.3	SE126027.009	%	60 - 130%	87
	BH10 0.15-0.45	SE126027.014	%	60 - 130%	81
	BH13 0.3-0.6	SE126027.019	%	60 - 130%	81
	BH16 2.1-2.4	SE126027.028	%	60 - 130%	80
	BH17 0.2-0.5	SE126027.032	%	60 - 130%	94
	BH21 0.2-0.5	SE126027.036	%	60 - 130%	83
	BH21 1.3-1.6	SE126027.038	%	60 - 130%	108
	X3	SE126027.042	%	60 - 130%	82
	Tripspike TS1	SE126027.044	%	60 - 130%	93
d8-toluene (Surrogate)	BH1 0.05-0.2	SE126027.001	%	60 - 130%	113
	BH4 0-0.3	SE126027.005	%	60 - 130%	99
	BH7 0-0.3	SE126027.009	%	60 - 130%	118
	BH10 0.15-0.45	SE126027.014	%	60 - 130%	99
	BH13 0.3-0.6	SE126027.019	%	60 - 130%	96
	BH16 2.1-2.4	SE126027.028	%	60 - 130%	102
	BH17 0.2-0.5	SE126027.032	%	60 - 130%	87
	BH21 0.2-0.5	SE126027.036	%	60 - 130%	108
	BH21 1.3-1.6	SE126027.038	%	60 - 130%	87
	X3	SE126027.042	%	60 - 130%	97
	Tripspike TS1	SE126027.044	%	60 - 130%	116
Dibromofluoromethane (Surrogate)	BH1 0.05-0.2	SE126027.001	%	60 - 130%	100
	BH4 0-0.3	SE126027.005	%	60 - 130%	97
	BH7 0-0.3	SE126027.009	%	60 - 130%	80
	BH10 0.15-0.45	SE126027.014	%	60 - 130%	104
	BH13 0.3-0.6	SE126027.019	%	60 - 130%	97
	BH16 2.1-2.4	SE126027.028	%	60 - 130%	110
	BH17 0.2-0.5	SE126027.032	%	60 - 130%	93
	BH21 0.2-0.5	SE126027.036	%	60 - 130%	96
	BH21 1.3-1.6	SE126027.038	%	60 - 130%	107
	X3	SE126027.042	%	60 - 130%	101
	Tripspike TS1	SE126027.044	%	60 - 130%	98

VOCs in Water

Method: ME-(AU)-	ENVJAN433/AN434
------------------	-----------------

Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Bromofluorobenzene (Surrogate)	Rinsate R1	SE126027.043	%	40 - 130%	85
d4-1,2-dichloroethane (Surrogate)	Rinsate R1	SE126027.043	%	40 - 130%	93
d8-toluene (Surrogate)	Rinsate R1	SE126027.043	%	40 - 130%	84
Dibromofluoromethane (Surrogate)	Rinsate R1	SE126027.043	%	40 - 130%	90

Volatile Petroleum H	ydrocarbons in Soil
----------------------	---------------------

Method: ME-(AU)-[ENV]AN433/AN434/AN410
--

Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Bromofluorobenzene (Surrogate)	BH1 0.05-0.2	SE126027.001	%	60 - 130%	92
	BH4 0-0.3	SE126027.005	%	60 - 130%	78
	BH7 0-0.3	SE126027.009	%	60 - 130%	81
	BH10 0.15-0.45	SE126027.014	%	60 - 130%	71
	BH13 0.3-0.6	SE126027.019	%	60 - 130%	81
	BH16 2.1-2.4	SE126027.028	%	60 - 130%	96
	BH17 0.2-0.5	SE126027.032	%	60 - 130%	93
	BH21 0.2-0.5	SE126027.036	%	60 - 130%	94

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Volatile Petroleum Hydrocarbons in Soil (continued)

Method: ME-(AU)-[ENV]AN433/AN434/AN410

Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Bromofluorobenzene (Surrogate)	BH21 1.3-1.6	SE126027.038	%	60 - 130%	80
	X3	SE126027.042	%	60 - 130%	85
d4-1,2-dichloroethane (Surrogate)	BH1 0.05-0.2	SE126027.001	%	60 - 130%	85
	BH4 0-0.3	SE126027.005	%	60 - 130%	80
	BH7 0-0.3	SE126027.009	%	60 - 130%	87
	BH10 0.15-0.45	SE126027.014	%	60 - 130%	81
	BH13 0.3-0.6	SE126027.019	%	60 - 130%	81
	BH16 2.1-2.4	SE126027.028	%	60 - 130%	80
	BH17 0.2-0.5	SE126027.032	%	60 - 130%	94
	BH21 0.2-0.5	SE126027.036	%	60 - 130%	83
	BH21 1.3-1.6	SE126027.038	%	60 - 130%	108
	X3	SE126027.042	%	60 - 130%	82
d8-toluene (Surrogate)	BH1 0.05-0.2	SE126027.001	%	60 - 130%	113
	BH4 0-0.3	SE126027.005	%	60 - 130%	99
	BH7 0-0.3	SE126027.009	%	60 - 130%	118
	BH10 0.15-0.45	SE126027.014	%	60 - 130%	99
	BH13 0.3-0.6	SE126027.019	%	60 - 130%	96
	BH16 2.1-2.4	SE126027.028	%	60 - 130%	102
	BH17 0.2-0.5	SE126027.032	%	60 - 130%	87
	BH21 0.2-0.5	SE126027.036	%	60 - 130%	108
	BH21 1.3-1.6	SE126027.038	%	60 - 130%	87
	X3	SE126027.042	%	60 - 130%	97
Dibromofluoromethane (Surrogate)	BH1 0.05-0.2	SE126027.001	%	60 - 130%	100
	BH4 0-0.3	SE126027.005	%	60 - 130%	97
	BH7 0-0.3	SE126027.009	%	60 - 130%	80
	BH10 0.15-0.45	SE126027.014	%	60 - 130%	104
	BH13 0.3-0.6	SE126027.019	%	60 - 130%	97
	BH16 2.1-2.4	SE126027.028	%	60 - 130%	110
	BH17 0.2-0.5	SE126027.032	%	60 - 130%	93
	BH21 0.2-0.5	SE126027.036	%	60 - 130%	96
	BH21 1.3-1.6	SE126027.038	%	60 - 130%	107
	X3	SE126027.042	%	60 - 130%	101
Volatile Petroleum Hydrocarbons in Water			Metho	d: ME-(AU)-[ENV]AI	N433/AN434/AN410
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Bromofluorobenzene (Surrogate)	Rinsate R1	SE126027.043	%	60 - 130%	85
d4-1,2-dichloroethane (Surrogate)	Rinsate R1	SE126027.043	%	60 - 130%	93
d8-toluene (Surrogate)	Rinsate R1	SE126027.043	%	60 - 130%	84
Dibromofluoromethane (Surrogate)	Rinsate R1	SE126027.043	%	60 - 130%	90

SE126027 R0

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Exchangeable Cations and Cation Exchange Capacity (CEC/ESP/SAR)

Exchangeable Cations and Cation Exchange Capacity (CEC/ESP/SAR)			Metho	od: ME-(AU)-[ENV]AN122
Sample Number	Parameter	Units	LOR	Result
LB054734.001	Exchangeable Sodium, Na	mg/kg	2	<-0.583
	Exchangeable Potassium, K	mg/kg	2	<-0.238
	Exchangeable Calcium, Ca	mg/kg	2	<-0.142
	Exchangeable Magnesium, Mg	mg/kg	2	<-0.015
Mercury (dissolved) in Water			Method: ME-	(AU)-[ENV]AN311/AN312
Sample Number	Parameter	Units	LOR	Result
LB054782.001	Mercury	mg/L	0.0001	<0.0001

Mercury in Soil

Mercury in Soil			Met	hod: ME-(AU)-[ENV]AN312
Sample Number	Parameter	Units	LOR	Result
LB054815.001	Mercury	mg/kg	0.01	<0.01
LB054816.001	Mercury	mg/kg	0.01	<0.01

Metals in Water (Dissolved) by ICPOES			Method: ME-(AU)-[ENV]AN320/AN3	
Sample Number	Parameter	Units	LOR	Result
LB054781.001	Arsenic, As	mg/L	0.02	<0.02
	Cadmium, Cd	mg/L	0.001	<0.001
	Chromium, Cr	mg/L	0.005	<0.005
	Copper, Cu	mg/L	0.005	<0.005
	Lead, Pb	mg/L	0.02	<0.02
	Nickel, Ni	mg/L	0.005	<0.005
	Zinc, Zn	mg/L	0.01	<0.01

OC Pesticides in Soil				Method: ME-	(AU)-[ENV]AN400/AN420
Sample Number		Parameter	Units	LOR	Result
LB054727.001		Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1
		Alpha BHC	mg/kg	0.1	<0.1
		Lindane	mg/kg	0.1	<0.1
		Heptachlor	mg/kg	0.1	<0.1
		Aldrin	mg/kg	0.1	<0.1
		Beta BHC	mg/kg	0.1	<0.1
		Delta BHC	mg/kg	0.1	<0.1
		Heptachlor epoxide	mg/kg	0.1	<0.1
		Alpha Endosulfan	mg/kg	0.2	<0.2
		Gamma Chlordane	mg/kg	0.1	<0.1
		Alpha Chlordane	mg/kg	0.1	<0.1
		p,p'-DDE	mg/kg	0.1	<0.1
		Dieldrin	mg/kg	0.05	<0.05
		Endrin	mg/kg	0.2	<0.2
		Beta Endosulfan	mg/kg	0.2	<0.2
		p,p'-DDD	mg/kg	0.1	<0.1
		p,p'-DDT	mg/kg	0.1	<0.1
		Endosulfan sulphate	mg/kg	0.1	<0.1
		Endrin Aldehyde	mg/kg	0.1	<0.1
		Methoxychlor	mg/kg	0.1	<0.1
		Endrin Ketone	mg/kg	0.1	<0.1
		Isodrin	mg/kg	0.1	<0.1
		Mirex	mg/kg	0.1	<0.1
	Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	%	-	116
OC Pesticides in Water				Method: ME-	(AU)-[ENV]AN400/AN420
Sample Number		Parameter	Units	LOR	Result
LB054771.001		Hexachlorobenzene (HCB)	μg/L	0.1	<0.1
		Alpha BHC	μg/L	0.1	<0.1
		Lindane (gamma BHC)	μg/L	0.1	<0.1

Heptachlor

Beta BHC

Delta BHC

Aldrin

<0.1

<0.1

<0.1

<0.1

0.1

0.1

0.1

0.1

µg/L

µg/L

µg/L

µg/L

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

OC Pesticides in Wate	er (continued)			Method: ME-	(AU)-[ENV]AN400/AN42
Sample Number		Parameter	Units	LOR	Result
LB054771.001		Heptachlor epoxide	μg/L	0.1	<0.1
		Alpha Endosulfan	μg/L	0.1	<0.1
		Gamma Chlordane	μg/L	0.1	<0.1
		Alpha Chlordane	ug/L	0.1	<0.1
		p.p'-DDE	ug/l_	0.1	<0.1
				0.1	<0.1
		Endrin	<u>µа/</u>	0.1	<0.1
		Beta Endosulfan	ps/2	0.1	<0.1
			pg/2	0.1	<0.1
		p,p 000	pg/2	0.1	<0.1
			μg/L	0.1	<0.1
			μg/L	0.1	<0.1
			μ9/Ε	0.1	<0.1
			µg/L	0.1	<0.1
			μg/L	0.1	<0.1
		Isodrin	μg/L	0.1	<0.1
		Mirex	μg/L	0.1	<0.1
	Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	%	-	114
OP Pesticides in Soil				Method: ME-	(AU)-[ENV]AN400/AN42
Sample Number		Parameter	Units	LOR	Result
LB054727.001		Dichlorvos	mg/kg	0.5	<0.5
-		Dimethoate	ma/ka	0.5	<0.5
		Diazinon (Dimpylate)	ma/ka	0.5	<0.5
		Eenitrothion	ma/ka	0.2	<0.2
		Malathion	ma/ka	0.2	<0.2
			mg/kg	0.2	<0.2
		Barathian athul (Barathian)	mg/kg	0.2	<0.2
			mg/kg	0.2	<0.2
		Biomoprios Euryi	IIIg/kg	0.2	<0.2
			mg/kg	0.5	<0.5
			mg/kg	0.2	<0.2
		Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2
	Surrogates	2-fluorobiphenyl (Surrogate)	%		88
		d14-p-terphenyl (Surrogate)	%		78
OP Pesticides in Wate	er -			Method: ME-	(AU)-[ENV]AN400/AN42
Sample Number		Parameter	Units	LOR	Result
LB054771.001		Dichlorvos	µg/L	0.5	<0.5
		Dimethoate	µg/L	0.5	<0.5
		Diazinon (Dimpylate)	μg/L	0.5	<0.5
		Fenitrothion	μg/L	0.2	<0.2
		Malathion	µo	0.2	<0.2
		Chlorpyrifos (Chlorpyrifos Ethyl)	ua/L	0.2	<0.2
		Parathion-ethyl (Parathion)	ug/L	0.2	<0.2
		Bromophos Ethyl	۲۹٬۲	0.2	<0.2
		Methidathion	μg/L	0.5	<0.5
		Ethion	μg/L	0.2	<0.0
			μg/L	0.2	<0.2
	Surrogates	2 fluorobinhopul (Surrogate)	µg/L	0.2	<u.2< td=""></u.2<>
	Surroyates		<u> </u>		14
		u 14-p-terpnenyi (Surrogate)	%		94
PAH (Polynuclear Aro	matic Hydrocarbons) in Soil			Meth	od: ME-(AU)-[ENV]AN42
Sample Number		Parameter	Units	LOR	Result
LB054726.001		Naphthalene	mg/kg	0.1	<0.1
		2-methylnaphthalene	mg/kg	0.1	<0.1
		1-methylnaphthalene	mg/kg	0.1	<0.1
		Acenaphthylene	mg/kg	0.1	<0.1
		Acenaphthene	mg/kg	0.1	<0.1
		Fluorene	mg/kg	0.1	<0.1
		Phenanthrene	mg/kg	0.1	<0.1
		Anthracene	mg/kg	0.1	<0.1
		Fluoranthene	ma/ka	0.1	<0.1

Pyrene

<0.1

mg/kg

0.1

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Arochlor 1248

Arochlor 1254

Arochlor 1260

PAH (Polynuclear Aromauc	c Hydrocarbons) in Soil (contir	nued)		Metho	od: ME-(AU)-[ENV]AN420
Sample Number		Parameter	Units	LOR	Result
LB054726.001		Benzo(a)anthracene	mg/kg	0.1	<0.1
		Chrysene	mg/kg	0.1	<0.1
		Benzo(a)pyrene	ma/ka	0.1	<0.1
		Indeno(1,2,3-cd)pyrene	ma/ka	0.1	<0.1
		Dibenzo(a&b)anthracene	ma/ka	0.1	<0.1
		Benzo(abi)pervlene	ma/ka	0.1	<0.1
			ma/ka	0.8	<0.8
	Surrogates	d5-nitrobenzene (Surrogate)	%		88
		2-fluorobiohenyl (Surrogate)	%	_	80
		d14-n-ternhenvl (Surrogate)	%		92
L B054727 001		Nanhthalene		0.1	<0.1
20001121.001			mg/kg	0.1	<0.1
		1. methylnaphthalene	mg/kg	0.1	<0.1
			mg/kg	0.1	<0.1
		Accessent	mg/kg	0.1	<0.1
		Elucropo	mg/kg	0.1	<0.1
		Phonenthrono	mg/kg	0.1	<0.1
		Anthropped	mg/kg	0.1	<0.1
		Fluerenthese	mg/kg	0.1	<0.1
		Fluorantnene	mg/kg	0.1	<0.1
		Pyrene	mg/kg	0.1	<0.1
		Benzo(a)anthracene	mg/kg	0.1	<0.1
		Chrysene	mg/kg	0.1	<0.1
	Benzo(a)pyrene	mg/kg	0.1	<0.1	
			mg/kg	0.1	<0.1
		Dibenzo(a&h)anthracene	mg/kg	0.1	<0.1
		Benzo(ghi)perylene	mg/kg	0.1	<0.1
		I otal PAH	mg/kg	0.8	<0.8
	Surrogates	d5-nitrobenzene (Surrogate)	%	-	90
		2-fluorobiphenyl (Surrogate)	%	-	88
		d14-p-terphenyl (Surrogate)	%	-	78
PAH (Polynuclear Aromatic	Hydrocarbons) in Water			Moth	d. ME-(ALI)-JENVJAN420
				Moun	
Sample Number		Parameter	Units	LOR	Result
Sample Number LB054771.001		Parameter Naphthalene	Units µg/L	LOR 0.1	Result <0.1
Sample Number LB054771.001		Parameter Naphthalene 2-methylnaphthalene	Units µg/L µg/L	LOR 0.1 0.1	Result <0.1 <0.1
Sample Number LB054771.001		Parameter Naphthalene 2-methylnaphthalene 1-methylnaphthalene	Units μg/L μg/L μg/L	LOR 0.1 0.1 0.1	Result <0.1 <0.1 <0.1 <0.1
Sample Number LB054771.001		Parameter Naphthalene 2-methylnaphthalene 1-methylnaphthalene Acenaphthylene	Units µg/L µg/L µg/L µg/L	LOR 0.1 0.1 0.1 0.1 0.1	Result <0.1
Sample Number LB054771.001		Parameter Naphthalene 2-methylnaphthalene 1-methylnaphthalene Acenaphthylene Acenaphthene	Units μg/L μg/L μg/L μg/L μg/L	LOR 0.1 0.1 0.1 0.1 0.1 0.1	Result <0.1 <0.1
Sample Number LB054771.001		Parameter Naphthalene 2-methylnaphthalene 1-methylnaphthalene Acenaphthylene Acenaphthene Fluorene	Units μg/L μg/L μg/L μg/L μg/L μg/L	LOR 0.1 0.1 0.1 0.1 0.1 0.1 0.1	Result <0.1
Sample Number LB054771.001		Parameter Naphthalene 2-methylnaphthalene 1-methylnaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene	Units μg/L μg/L μg/L μg/L μg/L μg/L μg/L	LOR 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	Result <0.1
Sample Number LB054771.001		Parameter Naphthalene 2-methylnaphthalene 1-methylnaphthalene Accenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene	Units μg/L μg/L μg/L μg/L μg/L μg/L μg/L	LOR 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	Result <0.1
Sample Number LB054771.001		Parameter Naphthalene 2-methylnaphthalene 1-methylnaphthalene Acenaphthylene Acenaphthylene Fluorene Phenanthrene Anthracene Fluoranthene	Units μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	LOR 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	Result <0.1
Sample Number LB054771.001		Parameter Naphthalene 2-methylnaphthalene 1-methylnaphthalene Acenaphthylene Acenaphthylene Pluorene Phenanthrene Anthracene Fluoranthene Pyrene	Units μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	LOR 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	Result <0.1 <0.1
Sample Number LB054771.001		Parameter Naphthalene 2-methylnaphthalene 1-methylnaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene	Units μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	LOR 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	Result <0.1 <0.1
Sample Number LB054771.001		Parameter Naphthalene 2-methylnaphthalene 1-methylnaphthalene Acenaphthylene Acenaphthylene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene	Units μg/L	LOR 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	Result <0.1 <0.1
Sample Number LB054771.001		Parameter Naphthalene 2-methylnaphthalene 1-methylnaphthalene Acenaphthylene Acenaphthylene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(a)pyrene	Units μg/L	LOR 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	Result <0.1 <0.1
Sample Number LB054771.001		Parameter Naphthalene 2-methylnaphthalene 1-methylnaphthalene Acenaphthylene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene	Units μg/L	LOR 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	Result <0.1
Sample Number LB054771.001		Parameter Naphthalene 2-methylnaphthalene 1-methylnaphthalene Acenaphthylene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenzo(a&h)anthracene	Units μg/L	LOR 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	Result <0.1
Sample Number LB054771.001		Parameter Naphthalene 2-methylnaphthalene 1-methylnaphthalene Acenaphthylene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenzo(qah)anthracene Benzo(qah)anthracene	Units μg/L	LOR 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	Result <0.1
Sample Number LB054771.001	Surrogates	Parameter Naphthalene 2-methylnaphthalene 1-methylnaphthalene Acenaphthylene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(a)pyrene Dibenzo(a&h)anthracene Benzo(akh)anthracene Benzo(ghi)perylene d5-nitrobenzene (Surrogate)	Units μg/L	LOR 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	Result <0.1
Sample Number LB054771.001	Surrogates	Parameter Naphthalene 2-methylnaphthalene 1-methylnaphthalene Acenaphthylene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(a)pyrene Dibenzo(a&h)anthracene Benzo(ak)hanthracene Benzo(ak)hanthracene Benzo(ak)hanthracene Jibenzo(akh)enthracene Benzo(akh)enthracene Jibenzo(akh)enthracene Jibenzo(akh)enthracene Benzo(bil)perylene d5-nitrobenzene (Surrogate) 2-fluorobiphenyl (Surrogate)	Units μg/L	LOR 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	Result <0.1
Sample Number LB054771.001	Surrogates	Parameter Naphthalene 2-methylnaphthalene 1-methylnaphthalene Acenaphthylene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenzo(a&h)anthracene Benzo(ak)hanthracene Benzo(abh)enthracene Jointrobenzene (Surrogate) 2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate)	Units μg/L	LOR 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	Result <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <t< th=""></t<>
Sample Number LB054771.001	Surrogates	Parameter Naphthalene 2-methylnaphthalene 1-methylnaphthalene Acenaphthylene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(a)pyrene Dibenzo(a&h)anthracene Benzo(akh)anthracene Benzo(akh)anthracene Journogate) 2-fluorobiphenyl (Surrogate) 2-fluorobiphenyl (Surrogate)	Units μg/L	LOR 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	Result <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <t< th=""></t<>
Sample Number LB054771.001 PCBs in Soll Sample Number	Surrogates	Parameter Naphthalene 2-methylnaphthalene Acenaphthylene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenzo(a&h)anthracene Benzo(gh)perylene d5-nitrobenzene (Surrogate) 2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate)	Units μg/L	LOR 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	Result <0.1
Sample Number LB054771.001 PCBs in Soil Sample Number LB054727.001	Surrogates	Parameter Naphthalene 2-methylnaphthalene Acenaphthylene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenzo(a&h)anthracene Benzo(a)hyprene Indeno(1,2,3-cd)pyrene Dibenzo(a&h)anthracene Benzo(a)hyprene 1/1 deno(1,2,3-cd)pyrene Dibenzo(a&h)anthracene Benzo(a)pyrene 1/2 denotohiphenyl (Surrogate) 2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate) Parameter Arochlor 1016	Units μg/L	LOR 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	Result <0.1
Sample Number LB054771.001 PCBs In Soil Sample Number LB054727.001	Surrogates	Parameter Naphthalene 2-methylnaphthalene 1-methylnaphthalene Acenaphthylene Acenaphthylene Acenaphthylene Phenanthrene Phuorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenzo(a&h)anthracene Benzo(ghi)perylene d5-nitrobenzene (Surrogate) 2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate) d14-p-terphenyl (Surrogate)	Units μg/L % % % % % % % % % % % % % % % </td <td>LOR 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1</td> <td>Result <0.1</td> <0.1	LOR 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	Result <0.1
Sample Number LB054771.001 PCBs In Soll Sample Number LB054727.001	Surrogates	Parameter Naphthalene 1-methylnaphthalene Acenaphthylene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenzo(a&h)anthracene Benzo(ghi)perylene d5-nitrobenzene (Surrogate) 2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate) Arochlor 1016 Arochlor 1221 Arochlor 1232	Units μg/L	LOR 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	Result <0.1
Sample Number LB054771.001 PCBs In Soil Sample Number LB054727.001	Surrogates	Parameter Naphthalene 2-methylnaphthalene 1-methylnaphthalene Acenaphthylene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenzo(akh)anthracene Benzo(ghi)perylene d5-nitrobenzene (Surrogate) 2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate) Tochlor 1016 Arochlor 1221 Arochlor 1232 Arochlor 1242	Units μg/L	LOR 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	Result <0.1

<0.2

<0.2

<0.2

mg/kg

mg/kg

mg/kg

0.2

0.2

0.2

SE126027 R0

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

PCBs in Soil (continued)

PCBs in Soil (continued)			Method: ME	-(AU)-[ENV]AN400/AN420
Sample Number	Parameter	Units	LOR	Result
LB054727.001	Arochlor 1262	mg/kg	0.2	<0.2
	Arochlor 1268	mg/kg	0.2	<0.2
	Total PCBs (Arochlors)	mg/kg	1	<1
Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	%	-	116
PCBs in Water			Method: ME	-(AU)-[ENV]AN400/AN420
Sample Number	Parameter	Units	LOR	Result
LB054771.001	Arochlor 1016	µg/L	1	<1
	Arochlor 1221	μg/L	1	<1
	Arochlor 1232	μg/L	1	<1
	Arochlor 1242	μg/L	1	<1
	Arochlor 1248	μg/L	1	<1
	Arochlor 1254	μg/L	1	<1
	Arochlor 1260	μg/L	1	<1
	Arochlor 1262	μg/L	1	<1
	Arochlor 1268	μg/L	1	<1
TOC in Soil			Meth	od: ME-(AU)-[ENV]AN188
Sample Number	Parameter	Units	LOR	Result
LB054803.004	Total Organic Carbon	%w/w	0.05	<0.05

Total Cyanide in soil by Discrete Analyser (Aquakem)		Method: ME-(AU)-[ENV]AN077/AN287		
Sample Number	Parameter	Units	LOR	Result
LB054825.001	Total Cyanide	mg/kg	0.1	<0.1

Total Cyanide in water by Discrete Analyser (Aquakem)			Method:	ME-(AU)-[ENV]AN077/AN287
Sample Number	Parameter	Units	LOR	Result
LB054820.001	Total Cyanide	mg/L	0.005	<0.005

Total Phenolics in Soil

Total Phenolics in Soil			Meth	od: ME-(AU)-[ENV]AN289
Sample Number	Parameter	Units	LOR	Result
LB054826.001	Total Phenois	mg/kg	0.1	<0.1

Total Phenolics in Water	Method:		hod: ME-(AU)-[ENV]AN289	
Sample Number	Parameter	Units	LOR	Result
LB054764.001	Total Phenols	mg/L	0.01	<0.01

Total Recoverable Metals in Soil by ICPOES from EPA 200.8 Digest			Method: ME-	(AU)-[ENV]AN040/AN320
Sample Number	Parameter	Units	LOR	Result
LB054811.001	Arsenic, As	mg/kg	3	<3
	Cadmium, Cd	mg/kg	0.3	<0.3
	Chromium, Cr	mg/kg	0.3	<0.3
	Copper, Cu	mg/kg	0.5	<0.5
	Lead, Pb	mg/kg	1	<1
	Nickel, Ni	mg/kg	0.5	<0.5
	Zinc, Zn	mg/kg	0.5	<0.5
LB054812.001	Arsenic, As	mg/kg	3	<3
	Cadmium, Cd	mg/kg	0.3	<0.3
	Chromium, Cr	mg/kg	0.3	<0.3
	Copper, Cu	mg/kg	0.5	<0.5
	Lead, Pb	mg/kg	1	<1
	Nickel, Ni	mg/kg	0.5	<0.5
	Zinc, Zn	mg/kg	0.5	<0.5

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

TRH (Total Recoveral	ole Hydrocarbons) in Soil			Mett	nod: ME-(AU)-[ENV]AN403
Sample Number		Parameter	Units	LOR	Result
LB054726.001		TBH C10-C14	ma/ka	20	<20
		TBH C15-C28	ma/ka	45	<45
		TBH C29-C36	ma/ka	45	<45
		TBH C37-C40	ma/ka	100	<100
		TRH C10-C36 Total	ma/ka	110	<110
LB054727.001		TRH C10-C14	ma/ka	20	<20
		TRH C15-C28	mg/kg	45	<45
		TRH C29-C36	mg/kg	45	<45
		TRH C37-C40	mg/kg	100	<100
		TRH C10-C36 Total	mg/kg	110	<110
TRH (Total Recoveral	ole Hydrocarbons) in Water			Mett	nod: ME-(AU)-[ENV]AN403
Sample Number	• •	Parameter	Units	LOR	Result
L B054771 001		TBH C10-C14		50	<50
20004771.001		TRH C15-C28	pg/t	200	<200
		TBH C29-C36	pg/t	200	<200
		TBH C37-C40	pg/t	200	<200
			μġ/Ľ	200	
VOU's IN Soil				Method: ME	-(AU)-[ENV]AN433/AN434
Sample Number		Parameter	Units	LOR	Result
LB054731.001	Monocyclic Aromatic	Benzene	mg/kg	0.1	<0.1
	Hydrocarbons	Toluene	mg/kg	0.1	<0.1
		Ethylbenzene	mg/kg	0.1	<0.1
		m/p-xylene	mg/kg	0.2	<0.2
		o-xylene	mg/kg	0.1	<0.1
	Polycyclic VOCs	Naphthalene	mg/kg	0.1	<0.1
	Surrogates	Dibromofluoromethane (Surrogate)	%	-	86
		d4-1,2-dichloroethane (Surrogate)	%	-	96
		d8-toluene (Surrogate)	%	-	119
		Bromofluorobenzene (Surrogate)	%	-	117
	Totals	Total BTEX*	mg/kg	0.6	<0.6
LB054731.028	Monocyclic Aromatic	Benzene	mg/kg	0.1	<0.1
	Hydrocarbons	Toluene	mg/kg	0.1	<0.1
		Ethylbenzene	mg/kg	0.1	<0.1
		m/p-xylene	mg/kg	0.2	<0.2
		o-xylene	mg/kg	0.1	<0.1
	Polycyclic VOCs	Naphthalene	mg/kg	0.1	<0.1
	Surrogates	Dibromofluoromethane (Surrogate)	%	-	104
		d4-1,2-dichloroethane (Surrogate)	%	-	79
		d8-toluene (Surrogate)	%	-	93
		Bromofluorobenzene (Surrogate)	%	-	94
	Totals	Total BTEX*	mg/kg	0.6	<0.6
VOCs in Water				Method: ME	-(AU)-[ENV]AN433/AN434
Sample Number		Parameter	Units	LOR	Result
LB054778.001	Monocyclic Aromatic	Benzene	μg/L	0.5	<0.5
	Hydrocarbons	Toluene	μg/L	0.5	<0.5
		Ethylbenzene	μg/L	0.5	<0.5
		m/p-xylene	μg/L	1	<1
		o-xylene	μg/L	0.5	<0.5
	Polycyclic VOCs	Naphthalene	μg/L	0.5	<0.5
	Surrogates	Dibromofluoromethane (Surrogate)	%	-	113
		d4-1,2-dichloroethane (Surrogate)	%	-	109
		d8-toluene (Surrogate)	%	-	95
		Bromofluorobenzene (Surrogate)	%	-	86
Volatile Petroleum Hv	drocarbons in Soil			Method: ME-(AU)-II	ENV]AN433/AN434/AN410
Sample Number		Parameter	Units	LOR	Result
LB054731.001		TRH C6-C9	ma/ka	20	<20
	Surrogates	Dibromofluoromethane (Surrogate)		-	86
	0011090100	d4-1.2-dichloroethane (Surrogate)	· · · · · · · · · · · · · · · · · · ·		96
		d8-toluene (Surrogate)	· · · · · · · · · · · · · · · · · · ·		119
LB054731.028		TRH C6-C9		20	<20

SE126027 R0

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Volatile Petroleum Hydrocarbons in Soil (continued)

Method: ME-(AU)-[ENV]AN433/AN434/AN410

Sample Number		Parameter	Units	LOR	Result
LB054731.028	Surrogates	Dibromofluoromethane (Surrogate)	%	-	104
		d4-1,2-dichloroethane (Surrogate)	%	-	79
		d8-toluene (Surrogate)	%	-	93
Volatile Petroleum Hydroca	rbons in Water			Method: ME-(AU)-[E	NV]AN433/AN434/AN410
Sample Number		Parameter	Units	LOR	Result
LB054778.001		TRH C6-C9	µg/L	40	<40
	Surrogates	Dibromofluoromethane (Surrogate)	%	-	113
		d4-1,2-dichloroethane (Surrogate)	%	-	109
		d8-toluene (Surrogate)	%	-	95
		Bromofluorobenzene (Surrogate)	%	-	86

Method: ME-(AU)-[ENV]AN312

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Mercury (dissolved) i	n Water					Method: ME-	(AU)-[ENV]AI	1311/AN312
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE126027.043	LB054782.014	Mercury	µg/L	0.0001	<0.0001	<0.0001	200	0

Mercury in Soil

Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE125990.010	LB054815.014	Mercury	mg/kg	0.01	0.02	0.0220189945	75	0
SE126027.039	LB054815.023	Mercury	mg/kg	0.01	0.17	0.22	35	24
SE126027.054	LB054816.014	Mercury	mg/kg	0.01	0.13	0.13	38	0
SE126027.056	LB054816.017	Mercury	mg/kg	0.01	0.03	0.03	68	0

OC Pesticides in S	Soil					Method: ME	-(AU)-[ENV]AI	N400/AN420
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE126027.050	LB054727.014	Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1	200	0
		Alpha BHC	mg/kg	0.1	<0.1	<0.1	200	0
		Lindane	mg/kg	0.1	<0.1	<0.1	200	0
		Heptachlor	mg/kg	0.1	<0.1	<0.1	200	0
		Aldrin	mg/kg	0.1	<0.1	<0.1	200	0
		Beta BHC	mg/kg	0.1	<0.1	<0.1	200	0
		Delta BHC	mg/kg	0.1	<0.1	<0.1	200	0
		Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1	200	0
		o,p'-DDE	mg/kg	0.1	<0.1	<0.1	200	0
		Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2	200	0
		Gamma Chlordane	mg/kg	0.1	<0.1	<0.1	200	0
		Alpha Chlordane	mg/kg	0.1	<0.1	<0.1	200	0
		trans-Nonachlor	mg/kg	0.1	0.1	0.1	110	8
		p,p'-DDE	mg/kg	0.1	0.1	0.1	125	10
		Dieldrin	mg/kg	0.05	0.48	0.48	51	0
		Endrin	mg/kg	0.2	<0.2	<0.2	200	0
		o,p'-DDD	mg/kg	0.1	<0.1	<0.1	200	0
		o,p'-DDT	mg/kg	0.1	<0.1	<0.1	200	0
		Beta Endosulfan	mg/kg	0.2	<0.2	<0.2	200	0
		p,p'-DDD	mg/kg	0.1	<0.1	<0.1	200	0
		p,p'-DDT	mg/kg	0.1	<0.1	<0.1	200	0
		Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	200	0
		Endrin Aldehyde	mg/kg	0.1	<0.1	<0.1	200	0
		Methoxychlor	mg/kg	0.1	<0.1	<0.1	200	0
		Endrin Ketone	mg/kg	0.1	<0.1	<0.1	200	0
		Isodrin	mg/kg	0.1	<0.1	<0.1	200	0
		Mirex	mg/kg	0.1	<0.1	<0.1	200	0
	Surro	gates Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.17	0.17	30	3
OP Pesticides in S	Soil					Method: ME	-(AU)-[ENV]AI	N400/AN420

OP Pesticides in Soil

							· · · · · · · · · · · · · · · ·	
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE126027.050	LB054727.014	Dichlorvos	mg/kg	0.5	<0.5	<0.5	200	0
		Dimethoate	mg/kg	0.5	<0.5	<0.5	200	0
		Diazinon (Dimpylate)	mg/kg	0.5	<0.5	<0.5	200	0
		Fenitrothion	mg/kg	0.2	<0.2	<0.2	200	0
		Malathion	mg/kg	0.2	<0.2	<0.2	200	0
		Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	<0.2	200	0
		Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	<0.2	200	0
		Bromophos Ethyl	mg/kg	0.2	<0.2	<0.2	200	0
		Methidathion	mg/kg	0.5	<0.5	<0.5	200	0
		Ethion	mg/kg	0.2	<0.2	<0.2	200	0
		Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	<0.2	200	0
	Surrogates	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.5	0.5	30	0
		d14-p-terphenyl (Surrogate)	mg/kg	-	0.5	0.5	30	2
PAH (Polynuclear	Aromatic Hydrocarbons) in Soil					Meth	od: ME-(AU)-[ENVJAN42

Original	Duplicate	Parameter	Units	LOR

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

PAH (Polynuclear	Aromatic Hydrocarb	ons) in Soil (contin	ued)				Meth	od: ME-(AU)-	ENVJAN420
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE126027.014	LB054726.018		Naphthalene	mg/kg	0.1	<0.1	<0.1	200	0
			2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	200	0
			1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	200	0
			Acenaphthylene	mg/kg	0.1	<0.1	<0.1	200	0
			Acenaphthene	mg/kg	0.1	<0.1	<0.1	200	0
			Fluorene	mg/kg	0.1	<0.1	<0.1	200	0
			Phenanthrene	mg/kg	0.1	<0.1	<0.1	200	0
			Anthracene	mg/kg	0.1	<0.1	<0.1	200	0
			Fluoranthene	mg/kg	0.1	<0.1	<0.1	200	0
			Pyrene	mg/kg	0.1	<0.1	<0.1	200	0
			Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	200	0
			Chrysene	mg/kg	0.1	<0.1	<0.1	200	0
			Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	<0.1	200	0
			Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	200	0
			Benzo(a)pyrene	mg/kg	0.1	<0.1	<0.1	200	0
			Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	200	0
			Dibenzo(a&h)anthracene	mg/kg	0.1	<0.1	<0.1	200	0
			Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	200	0
			Total PAH	mg/kg	0.8	<0.8	<0.8	200	0
			Carcinogenic PAHs (as BaP TEQ)-assume results	TEQ (mg/kg)	0.2	<0.2	<0.2	200	0
		Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.4	0.4	30	8
			2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	0.4	30	0
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.4	0.4	30	15
SE126027.036	LB054727.006		Naphthalene	mg/kg	0.1	<0.1	<0.1	200	0
			2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	200	0
			1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	200	0
			Acenaphthylene	mg/kg	0.1	<0.1	<0.1	200	0
			Acenaphthene	mg/kg	0.1	<0.1	<0.1	200	0
			Fluorene	mg/kg	0.1	<0.1	<0.1	200	0
			Phenanthrene	mg/kg	0.1	<0.1	<0.1	200	0
			Anthracene	mg/kg	0.1	<0.1	<0.1	200	0
			Fluoranthene	mg/kg	0.1	<0.1	<0.1	200	0
			Pyrene	mg/kg	0.1	<0.1	<0.1	200	0
			Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	200	0
			Chrysene	mg/kg	0.1	<0.1	<0.1	200	0
			Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	<0.1	200	0
			Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	200	0
			Benzo(a)pyrene	mg/kg	0.1	<0.1	<0.1	200	0
			Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	200	0
			Dibenzo(a&h)anthracene	mg/kg	0.1	<0.1	<0.1	200	0
			Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	200	0
			Total PAH	mg/kg	0.8	<0.8	<0.8	200	0
			Carcinogenic PAHs (as BaP TEQ)-assume results	TEQ (mg/kg)	0.2	<0.2	<0.2	200	0
		Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.4	0.4	30	2
			2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	0.4	30	2
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.4	0.4	30	2
pH in soil (1:5)							Meth	od: ME-(AU)-	[ENV]AN101
Original	Duplicate		Parameter	Units	LOR	Original	Dup <u>licate</u>	Criteria %	RPD %
05.00007.000	10051755010								

SE126027.032 LB054755.012 pH Units pН 4.7 4.7 SE126027.038 LB054755.015 pH Units 5.8 pН 5.9 32 1

TOC in Soil

TOC in Soil						Meth	od: ME-(AU)-[ENVJAN188
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE126027.001	LB054803.007	Total Organic Carbon	%w/w	0.05	0.73	0.71	22	2

Total Cyanide in water by Discrete Analyser (Aquakem)

Method: ME-(AU)-[ENV]AN077/AN287

Original Duplicate Parameter Units LOR
--

Method: ME-(AU)-IENVIAN289

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Total Cyanide in water by Discrete Analyser (Aquakem) (continued)							-(AU)-[ENV]AI	N077/AN287
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE126093A.001	LB054820.006	Total Cyanide	mg/L	0.005	<0.004	<0.004	200	0

Total Phenolics in Water

Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE125973.001	LB054764.004	Total Phenols	mg/L	0.01	0.31	0.30	18	2

Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria <u>%</u>	RPD %
SE125990.010	LB054811.014		Arsenic, As	mg/kg	3	7	6.3891981609	76	4
			Cadmium, Cd	mg/kg	0.3	0.5	0.4140742068	98	11
			Chromium, Cr	mg/kg	0.3	19	17.0573747126	33	13
			Copper, Cu	mg/kg	0.5	25	24.7173108045	32	1
			Lead, Pb	mg/kg	1	52	38.7278114942	32	27
			Nickel, Ni	mg/kg	0.5	25	22.6297958620	32	8
			Zinc, Zn	mg/kg	0.5	94	00.093839080	32	6
SE126027.039	LB054811.024		Arsenic, As	mg/kg	3	43	46	37	7
			Cadmium, Cd	mg/kg	0.3	0.9	0.9	64	4
			Chromium, Cr	mg/kg	0.3	18	19	33	4
			Copper, Cu	mg/kg	0.5	73	80	31	10
			Lead, Pb	mg/kg	1	200	210	30	5
			Nickel, Ni	mg/kg	0.5	8.8	9.1	36	3
			Zinc, Zn	mg/kg	0.5	360	370	31	1
SE126027.054	LB054812.014		Arsenic, As	mg/kg	3	<3	<3	138	13
			Cadmium, Cd	mg/kg	0.3	0.4	0.5	95	23
			Chromium, Cr	mg/kg	0.3	5.7	5.8	39	1
			Copper, Cu	mg/kg	0.5	9.2	10	35	10
			Lead, Pb	mg/kg	1	21	28	34	27
			Nickel, Ni	mg/kg	0.5	1.5	1.7	62	13
			Zinc, Zn	mg/kg	0.5	15	18	42	21
SE126077.003	LB054812.020		Arsenic, As	mg/kg	3	2	2	164	9
			Cadmium, Cd	mg/kg	0.3	0.3	0.4	116	8
			Chromium, Cr	mg/kg	0.3	5.8	6.1	38	4
			Copper, Cu	mg/kg	0.5	17	17	33	2
			Lead, Pb	mg/kg	1	18	17	36	6
			Nickel, Ni	mg/kg	0.5	18	19	33	3
			Zinc, Zn	mg/kg	0.5	93	96	32	3
TRH (Total Recov	erable Hydrocarbons	s) in Soil					Metho	d: ME-(AU)-	ENVJAN40
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE126027.014	LB054726.019		TRH C10-C14	mg/kg	20	<20	<20	200	0
			TRH C15-C28	mg/kg	45	<45	<45	200	0
			TRH C29-C36	mg/kg	45	<45	<45	200	0
			TRH C37-C40	mg/kg	100	<100	<100	200	0
			TRH C10-C36 Total	mg/kg	110	<110	<110	200	0
			TRH C10-C40 Total	mg/kg	210	<210	<210	200	0
		TRH F Bands	TRH >C10-C16 (F2)	mg/kg	25	<25	<25	200	0
			TRH >C16-C34 (F3)	mg/kg	90	<90	<90	200	0
			TRH >C34-C40 (F4)	mg/kg	120	<120	<120	200	0
SE126027.036	LB054727.006		TRH C10-C14	ma/ka	20	<20	<20	200	0

TRH C15-C28

TRH C29-C36

TRH C37-C40

TRH F Bands

TRH C10-C36 Total

TRH C10-C40 Total

TRH >C10-C16 (F2)

TRH >C16-C34 (F3)

TRH >C34-C40 (F4)

0

0

0

0

0

0

0

0

45

45

100

110

210

25

90

120

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

<45

<45

<100

<110

<210

<25

<90

<120

<45

<45

<100

<110

<210

<25

<90

<120

200

200

200

200

200

200

200

200

Method: ME-(AU)-[ENV]AN433/AN434

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

	\sim	^	·	0-1	
• •	U	C78.	In.	50	L
	~	~~		00	

Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE125990.010	LB054731.015	Monocyclic	Benzene	mg/kg	0.1	<0.1	0	200	0
		Aromatic	Toluene	mg/kg	0.1	0.1	0.11	121	0
			Ethylbenzene	mg/kg	0.1	<0.1	0	200	0
			m/p-xylene	mg/kg	0.2	<0.2	0	200	0
			o-xylene	mg/kg	0.1	<0.1	0	200	0
		Polycyclic	Naphthalene	mg/kg	0.1	<0.1	0	200	0
		Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	5.1	5.15	50	2
			d4-1,2-dichloroethane (Surrogate)	mg/kg	-	4.3	4.61	50	8
			d8-toluene (Surrogate)	mg/kg	-	5.0	5.39	50	7
			Bromofluorobenzene (Surrogate)	mg/kg	-	4.7	4.76	50	2
		Totals	Total Xylenes*	mg/kg	0.3	<0.3	0	200	0
			Total BTEX*	mg/kg	0.6	<0.6	0.11	200	0
SE126027.038	LB054731.026	Monocyclic	Benzene	mg/kg	0.1	<0.1	<0.1	200	0
		Aromatic	Toluene	mg/kg	0.1	<0.1	<0.1	200	0
			Ethylbenzene	mg/kg	0.1	<0.1	<0.1	200	0
			m/p-xylene	mg/kg	0.2	<0.2	<0.2	200	0
			o-xylene	mg/kg	0.1	<0.1	<0.1	200	0
		Polycyclic	Naphthalene	mg/kg	0.1	<0.1	<0.1	200	0
		Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	5.4	5.3	50	1
			d4-1,2-dichloroethane (Surrogate)	mg/kg	-	5.4	5.8	50	7
			d8-toluene (Surrogate)	mg/kg	-	4.3	5.1	50	17
			Bromofluorobenzene (Surrogate)	mg/kg	-	4.0	4.6	50	14
		Totals	Total Xylenes*	mg/kg	0.3	<0.3	<0.3	200	0
			Total BTEX*	mg/kg	0.6	<0.6	<0.6	200	0
Volatile Petroleum	Hydrocarbons in Soi	il				Metho	d: ME-(AU)-[E	ENVJAN433/A	N434/AN410
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE125990.010	LB054731.015		TRH C6-C10	mg/kg	25	<25	0	200	0
			TRH C6-C9	mg/kg	20	<20	0	200	0
		Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	5.1	5.15	30	2
			d4-1,2-dichloroethane (Surrogate)	mg/kg	-	4.3	4.61	30	8
			d8-toluene (Surrogate)	mg/kg	-	5.0	5.39	30	7
			Bromofluorobenzene (Surrogate)	mg/kg	-	4.7	4.76	30	2
		VPH F Bands	Benzene (F0)	mg/kg	0.1	<0.1	0	200	0
			TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	-0.11	200	0
SE126027.038	LB054731.026		TRH C6-C10	mg/kg	25	<25	<25	200	0
			TRH C6-C9	mg/kg	20	<20	<20	200	0
		Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	5.4	5.3	30	1
			d4-1,2-dichloroethane (Surrogate)	mg/kg	-	5.4	5.8	30	7
			d8-toluene (Surrogate)	mg/kg	-	4.3	5.1	30	17
			Bromofluorobenzene (Surrogate)	mg/kg	-	4.0	4.6	30	14
		VPH F Bands	Benzene (F0)	mg/kg	0.1	<0.1	<0.1	200	0
			TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	200	0

Method: ME-(AU)-[ENV]AN122

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Exchangeable Cations and Cation Exchange Capacity (CEC/ESP/SAR)

Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB054734.002	Exchangeable Sodium, Na	mg/kg	2	160	160	80 - 120	98
	Exchangeable Potassium, K	mg/kg	2	280	330	80 - 120	85
	Exchangeable Calcium, Ca	mg/kg	2	4400	4347	80 - 120	101
	Exchangeable Magnesium, Mg	mg/kg	2	1400	1578	80 - 120	91
Mercury in Soil					N	/lethod: ME-(A	U)-[ENV]AN312
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB054815.002	Mercury	mg/kg	0.01	0.21	0.2	70 - 130	104
LB054816.002	Mercury	ma/ka	0.01	0.21	0.2	70 - 130	104

Metale in Water (Dissolved), by ICDOES

Metals in Water (D	issolved) by ICP(DES					Method:	ME-(AU)-[EN	/JAN320/AN321
Sample Number		Parameter	U	nits L	OR Re	esult	Expected	Criteria %	Recovery %
LB054781.002		Arsenic, As	mg	/L 0.0	2	1.8	2	80 - 120	92
		Cadmium, Cd	mg	/L 0.0	01	1.9	2	80 - 120	97
		Chromium, Cr	mg	/L 0.0	05	1.9	2	80 - 120	95
		Copper, Cu	mg	/L 0.0	05	1.9	2	80 - 120	95
		Lead, Pb	mg	/L 0.0	2	1.8	2	80 - 120	92
		Nickel, Ni	mg	/L 0.0	05	1.9	2	80 - 120	94
		Zinc, Zn	mg	/L 0.0	1	1.9	2	80 - 120	96
OC Pesticides in S	oil						Method:	ME-(AU)-[EN	/JAN400/AN420
Sample Number		Parameter	U	nits L	DR Re	esult	Expected	Criteria %	Recovery %
LB054727.002		Heptachlor	mg/	'kg 0.	1	0.3	0.2	60 - 140	140
		Aldrin	mg/	'kg 0.	1	0.3	0.2	60 - 140	140
		Delta BHC	mg/	'kg 0.	1	0.3	0.2	60 - 140	135
		Dieldrin	mg/	kg 0.0	5 ().28	0.2	60 - 140	140
		Endrin	mg/	'kg 0.	2	0.3	0.2	60 - 140	140
		p,p'-DDT	mg/	kg 0.	1	0.2	0.2	60 - 140	120
	Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/	- kg	().17	0.15	40 - 130	110
OC Pesticides in W	Vater			-			Method:	ME-(AU)-[EN	/JAN400/AN420
Sample Number		Parameter	U	nits L	DR R	esult	Expected	Criteria %	Recovery %
LB054771.002		Heptachlor	hði	/L 0.	1	0.2	0.2	60 - 140	115
		Aldrin	hði	/L 0.	1	0.2	0.2	60 - 140	115
		Delta BHC	hði	/L 0.	1	0.2	0.2	60 - 140	105
		Dieldrin	hði	/L 0.	1	0.2	0.2	60 - 140	110
		Endrin	hði	/L 0.	1	0.2	0.2	60 - 140	115
		p,p'-DDT	hði	/L 0.	1	0.2	0.2	60 - 140	100
	Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	hði	/L -	(0.15	0.15	40 - 130	97
OP Pesticides in S	oil						Method:	ME-(AU)-[EN	/JAN400/AN420
Sample Number		Parameter	U	nits L	DR R	esult	Expected	Criteria %	Recovery %
LB054727.002		Dichlorvos	mg/	'kg 0.	5	1.6	2	60 - 140	82
		Diazinon (Dimpylate)	mg/	kg 0.	5	1.6	2	60 - 140	79
		Chlorpyrifos (Chlorpyrifos Ethyl)	mg/	'kg 0.	2	1.6	2	60 - 140	79
		Ethion	mg/	'kg 0.	2	1.5	2	60 - 140	77
	Surrogates	2-fluorobiphenyl (Surrogate)	mg/	'kg -		0.4	0.5	40 - 130	82
		d14-p-terphenyl (Surrogate)	mg/	'kg -		0.4	0.5	40 - 130	78
OP Pesticides in W	/ater			-			Method:	ME-(AU)-[EN	/JAN400/AN420
Sample Number		Parameter	U	nits <u>L</u>	DR <u>R</u>	esult	Expected	Criteria <u>%</u>	Recovery <u>%</u>
LB054771.002		Dichlorvos	hði	/L 0.	5	6.3	8	60 - 140	79
		Diazinon (Dimpylate)	hði	/L 0.	5	6.0	8	60 - 140	75
		Chlorpyrifos (Chlorpyrifos Ethyl)	hði	/L 0.	2	6.3	8	60 - 140	78
		Ethion	hði	/L 0.	2	6.5	8	60 - 140	81
	Surrogates	2-fluorobiphenyl (Surrogate)	hði	/L -		0.4	0.5	40 - 130	82
		d14-p-terphenyl (Surrogate)	hði	/L -		0.4	0.5	40 - 130	80
PAH (Polynuclear	Aromatic Hydroca	rbons) in Soil					1	vethod: ME-(A	U)-[ENV]AN420
Sample Number		Parameter	U	nits <u>L</u>	DR <u>R</u>	esult	Expected	Crit <u>eria %</u>	Recovery %
LB054726.002		Naphthalene		'kg 0.	1	3.7	4	60 - 140	92
		Acenaphthylene		- 0.	1	3.8	4	60 - 140	96
		Acenaphthene	mg/	'kg 0.	1	3.9	4	60 - 140	98

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

PAH (Polynuclear	Aromatic Hydroca	rbons) in Soil (continued)					N	lethod: ME-(A	U)-[ENV]AN420
Sample Number		Parameter		Units	LOR	Result	Expected	Criteria %	Recovery %
LB054726.002		Phenanthrene		mg/kg	0.1	3.8	4	60 - 140	96
		Anthracene		mg/kg	0.1	3.5	4	60 - 140	88
		Fluoranthene		mg/kg	0.1	3.5	4	60 - 140	88
		Pyrene		mg/kg	0.1	3.7	4	60 - 140	92
PAH (Polynuclear Aroma Sample Number LB054726.002 Sur LB054727.002 LB054727.002 PAH (Polynuclear Aroma Sample Number LB054771.002 Sur PCBs in Soil Sample Number LB054727.002 PCBs in Water Sample Number LB054771.002 PCBs in Water Sample Number LB054771.002 PCBs in Water Sample Number LB054775.001		Benzo(a)pyrene		mg/kg	0.1	4.2	4	60 - 140	106
	Surrogates	d5-nitrobenzene (Surrogate)		mg/kg	-	0.4	0.5	40 - 130	86
		2-fluorobiphenyl (Surrogate)		Herbic: HE-(AU)-[ENV]AP mg/kg 0.1 3.8 4 60 - 140 96 mg/kg 0.1 3.5 4 60 - 140 88 mg/kg 0.1 3.5 4 60 - 140 92 mg/kg 0.1 3.7 4 60 - 140 92 mg/kg 0.1 3.7 4 60 - 140 92 mg/kg 0.1 4.2 4 60 - 140 92 mg/kg 0.1 3.6 40 - 130 78 mg/kg 0.1 3.6 4 60 - 140 92 mg/kg 0.1 3.7 4 60 - 140 92 mg/kg 0.1 3.6 4 60 - 140 92 mg/kg 0.1 3.6 4 60 - 140 88 mg/kg 0.1 3.5 4 60 - 140 88 mg/kg 0.1 3.5 40 60 - 140 88 mg/kg 0.4	78				
		d14-p-terphenyl (Surrogate)		mg/kg	-	0.4	0.5	40 - 130	82
LB054727.002	Control Department Parameter Op/s O Result Result Control Cont	89							
		Acenaphthylene		mg/kg	0.1	3.7	4	60 - 140	92
		Acenaphthene		mg/kg	0.1	3.7	4	60 - 140	92
		Phenanthrene		mg/kg	0.1	3.6	4	60 - 140	90
		Anthracene		ma/ka	0.1	3.7	4	60 - 140	92
		Fluoranthene		ma/ka	0.1	3.6	4	60 - 140	90
		Pyrene		ma/ka	0.1	3.5	4	60 - 140	88
		Benzo(a)nyrene		ma/ka	0.1	3.0	4	60 - 140	98
	Surrogates	d5-nitrobenzene (Surrogate)		mg/kg	0.1	0.4		40 - 130	80
	Junoyales	2.fluorobinbenyl (Surrogate)		ma/ka		0.4	0.5	40 - 130	82
		d14 a temberul (Surregate)		mg/kg	-	0.4	0.5	40 - 130	02
		d14-p-terprientyl (Surrogate)		mg/kg	-	0.4	0.5	40 - 130	02
PAH (Polynuclear)	Aromatic Hydroca	rbons) in Water					ľ	Nethod: ME-(A	U)-[ENV]AN42
Sample Number		Parameter		Units	LOR	Result	Expected	Criteria %	Recovery %
LB054771.002		Naphthalene		µg/L	0.1	35	40	60 - 140	87
		Acenaphthylene		µg/L	0.1	38	40	60 - 140	94
		Acenaphthene		µg/L	0.1	36	40	60 - 140	90
		Phenanthrene		µg/L	0.1	33	40	60 - 140	84
		Anthracene		µg/L	0.1	33	40	60 - 140	81
		Fluoranthene		µg/L	0.1	33	40	60 - 140	83
		Pyrene		µg/L	0.1	32	40	60 - 140	81
		Benzo(a)pyrene		µg/L	0.1	35	40	60 - 140	87
	Surrogates	d5-nitrobenzene (Surrogate)		µg/L	-	0.4	0.5	40 - 130	80
		2-fluorobiphenyl (Surrogate)		µg/L	-	0.4	0.5	40 - 130	82
		d14-p-terphenyl (Surrogate)		µg/L	-	0.4	0.5	40 - 130	80
PCRe in Soil							Method		
		Deserveden		1114		Desult	European al		
Sample Number		Parameter		Units	LOR	Result	Expected	Criteria %	Recovery %
LB054727.002		Arochior 1260		тд/кд	0.2	0.5	0.4	60 - 140	130
PCBs in Water							Method:	ME-(AU)-[EN	VJAN400/AN42
Sample Number		Parameter		Units	LOR	Result	Expected	Criteria %	Recovery %
LB054771.002		Arochlor 1260		µg/L	1	<1	0.4	60 - 140	105
pH in soil (1:5)								/ethod: ME-(A	U)-IENVIAN10
Sample Number		Parameter		Unite	LOP-	Recult	Expected	Critoria %	Recovery %
L R054755 004					LOK	7.5			A00
LB054755.001		рн		ph Units	-	7.5	7.415	98 - 102	100
TOC in Soil			 				N	Nethod: ME-(A	U)-[ENV]AN18
Sample Number		Parameter		Units	LOR	Result	Expected	Criteria %	Recovery %
LB054803.002		Total Organic Carbon		%w/w	0.05	0.32	0.325	80 - 120	98
LB054803.005		Total Organic Carbon		%w/w	0.05	0.32	0.325	80 - 120	97
Total Cvanide in so	oil by Discrete Ana	alvser (Aquakem)					Method:	ME-(AU)-IEN	VIAN077/AN28

							-
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB054825.002	Total Cyanide	mg/kg	0.1	0.3	0.25	70 - 130	105

Method: ME-(AU)-[ENV]AN040/AN320

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Total Cyanide in water by Discrete Analyser (Aquakem) Method: ME-(AU)-[ENV]A							/jan077/an287
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB054820.002	Total Cyanide	mg/L	0.005	0.027	0.025	80 - 120	109

Total Phenolics in Soil

Total Phenolics in Soil					N	Nethod: ME-(A	U)- [ENV]AN28 9
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB054826.002	Total Phenols	mg/kg	0.1	2.5	2.5	70 - 130	100

Total Phenolics in Water

Total Phenolics in Water					1	Method: ME-(A	U)-[ENV]AN289
Sample Number	Parameter	Units	s LOR	Result	Expected	Criteria %	Recovery %
LB054764.002	Total Phenols	mg/L	0.01	0.25	0.25	80 - 120	101

Total Recoverable Metals in Soil by ICPOES from EPA 200.8 Digest

Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB054811.002	Arsenic, As	mg/kg	3	48	50	80 - 120	96
	Cadmium, Cd	mg/kg	0.3	49	50	80 - 120	97
	Chromium, Cr	mg/kg	0.3	49	50	80 - 120	99
	Copper, Cu	mg/kg	0.5	48	50	80 - 120	96
	Lead, Pb	mg/kg	1	49	50	80 - 120	98
	Nickel, Ni	mg/kg	0.5	49	50	80 - 120	98
	Zinc, Zn	mg/kg	0.5	49	50	80 - 120	98
LB054812.002	Arsenic, As	mg/kg	3	49	50	80 - 120	97
	Cadmium, Cd	mg/kg	0.3	50	50	80 - 120	100
	Chromium, Cr	mg/kg	0.3	48	50	80 - 120	97
	Copper, Cu	mg/kg	0.5	50	50	80 - 120	101
	Lead, Pb	mg/kg	1	50	50	80 - 120	99
	Nickel, Ni	mg/kg	0.5	49	50	80 - 120	98
	Zinc, Zn	mg/kg	0.5	49	50	80 - 120	99

TRH (Total Recoverable Hydrocarbons) in Soil

TRH (Total Recove	RH (Total Recoverable Hydrocarbons) in Soil							U)-[ENV]AN403
Sample Number		Parameter	Uni	s LOF	Result	Expected	Criteria %	Recovery %
LB054726.002		TRH C10-C14	mg/kg	20	36	40	60 - 140	90
		TRH C15-C28	mg/kg	45	<45	40	60 - 140	90
		TRH C29-C36	mg/kg	45	<45	40	60 - 140	80
	TRH F Bands	TRH >C10-C16 (F2)	mg/kg	25	36	40	60 - 140	90
		TRH >C16-C34 (F3)	mg/kg	90	<90	40	60 - 140	85
		TRH >C34-C40 (F4)	mg/kg	120	<120	20	60 - 140	85
LB054727.002		TRH C10-C14	mg/kg	20	40	40	60 - 140	100
		TRH C15-C28	mg/kg	45	<45	40	60 - 140	100
		TRH C29-C36	mg/kg	45	<45	40	60 - 140	85
	TRH F Bands	TRH >C10-C16 (F2)	mg/kg	25	40	40	60 - 140	100
		TRH >C16-C34 (F3)	mg/kg	90	<90	40	60 - 140	98
		TRH >C34-C40 (F4)	mg/kg	120	<120	20	60 - 140	80

TRH (Total Recover	able Hydrocarboi	is) in Water				N	lethod: ME-(Al	U)-[ENV]AN403
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB054771.002		TRH C10-C14	μg/L	50	1100	1200	60 - 140	94
		TRH C15-C28	μg/L	200	1200	1200	60 - 140	96
		TRH C29-C36	µg/L	200	1100	1200	60 - 140	95
	TRH F Bands	TRH >C10-C16 (F2)	µg/L	60	1100	1200	60 - 140	95
		TRH >C16-C34 (F3)	µg/L	500	1100	1200	60 - 140	95
		TRH >C34-C40 (F4)	µg/L	500	590	600	60 - 140	98
VOC's in Soil						Method:	ME-(AU)-[ENV	/JAN433/AN434

Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB054731.002	Monocyclic	Benzene	mg/kg	0.1	2.2	2.9	60 - 140	76
	Aromatic	Toluene	mg/kg	0.1	2.5	2.9	60 - 140	85
		Ethylbenzene	mg/kg	0.1	2.7	2.9	60 - 140	92
		m/p-xylene	mg/kg	0.2	5.3	5.8	60 - 140	91
		o-xylene	mg/kg	0.1	2.7	2.9	60 - 140	92

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

VOC's in Soil (conti	nued)					Method:	ME-(AU)-[EN	V]AN433/AN434		
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %		
LB054731.002	Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	4.3	5	60 - 140	86		
	-	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	4.7	5	60 - 140	94		
		d8-toluene (Surrogate)	mg/kg	-	5.8	5	60 - 140	117		
		Bromofluorobenzene (Surrogate)	mg/kg	-	5.3	5	60 - 140	105		
LB054731.029	Monocyclic	Benzene	mg/kg	0.1	2.3	2.9	60 - 140	78		
	Aromatic	Toluene	mg/kg	0.1	2.6	2.9	60 - 140	91		
		Ethylbenzene	mg/kg	0.1	3.0	2.9	5 60 - 140 5 60 - 140 5 60 - 140 5 60 - 140 2.9 60 - 140 2.9 60 - 140 2.9 60 - 140 2.9 60 - 140 2.9 60 - 140 5 60 - 140 5 60 - 140 5 60 - 140 5 60 - 140 5 60 - 140 5 60 - 140 5 60 - 140 45.45 60 - 140 45.45 60 - 140 90.9 60 - 140 45.45 60 - 140 90.9 60 - 140 45.45 60 - 140 91.9 60 - 140 23.2 60 - 140 5 60 - 140 5 60 - 140 5 60 - 140 5 60 - 140 5 60 - 140 5 60 - 140 5 60 - 140 5	102		
		m/p-xylene	mg/kg	0.2	5.9	5.8	60 - 140	102		
		o-xylene	mg/kg	0.1	2.9	2.9	Method: ME-(AU)-[EN] Expected Criteria % 5 60 - 140 5 60 - 140 5 60 - 140 5 60 - 140 2.9 60 - 140 2.9 60 - 140 2.9 60 - 140 5.8 60 - 140 5 60 - 140 5.8 60 - 140 5 60 - 140 5 60 - 140 5 60 - 140 5 60 - 140 5 60 - 140 5 60 - 140 5 60 - 140 5 60 - 140 45.45 60 - 140 45.45 60 - 140 45.45 60 - 140 23.2 60 - 140 23.2 60 - 140 5 60 - 140 5 60 - 140 5 60 - 140 5 60 - 140 5 60 - 140 5 60 - 140 5	101		
	Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	5.5	5	60 - 140	110		
		d4-1,2-dichloroethane (Surrogate)	mg/kg	-	4.7	5	60 - 140	93		
		d8-toluene (Surrogate)	mg/kg	-	5.6	5	60 - 140	112		
		Bromofluorobenzene (Surrogate)	mg/kg	-	5.5	5	60 - 140	110		
VOCs in Water						Method: ME-(AU)-[ENV]AN433/				
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %		
LB054778.002	Monocyclic	Benzene	µg/L	0.5	51	45.45	60 - 140	113		
	Aromatic	Toluene	µg/L	0.5	51	45.45	60 - 140	113		
		Ethylbenzene	µg/L	0.5	51	45.45	60 - 140	113		
		m/p-xylene	µg/L	1	100	90.9	60 - 140	113		
		o-xylene	µg/L	0.5	51	45.45	60 - 140	113		
Volatile Petroleum I	Hydrocarbons in \$	Soil			I	Method: ME-(Al	J)-[ENV]AN43	3/AN434/AN410		
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %		
LB054731.002		TRH C6-C10	mg/kg	25	<25	24.65	60 - 140	91		
		TRH C6-C9	mg/kg	20	22	23.2	60 - 140	93		
	Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	4.3	5	60 - 140	86		
		d4-1,2-dichloroethane (Surrogate)	mg/kg	-	4.7	5	60 - 140	94		
		d8-toluene (Surrogate)	mg/kg	-	5.8	5	60 - 140	117		
		Bromofluorobenzene (Surrogate)	mg/kg	-	5.3	5	60 - 140	105		
	VPH F Bands	TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	7.25	60 - 140	99		
LB054731.029		TRH C6-C10	mg/kg	25	<25	24.65	60 - 140	91		
		TRH C6-C9	mg/kg	20	22	23.2	60 - 140	94		
	Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	5.5	5	60 - 140	110		
		d4-1,2-dichloroethane (Surrogate)	mg/kg	-	4.7	5	60 - 140	93		
		d8-toluene (Surrogate)	mg/kg	-	5.6	5	60 - 140	112		
		Bromofluorobenzene (Surrogate)	mg/kg	-	5.5	5	60 - 140	110		
	VPH F Bands	TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	7.25	60 - 140	77		
Volatile Petroleum I	Hydrocarbons in \	Water			I	Method: ME-(Al	J)-[ENV]AN43	3/AN434/AN410		
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %		
LB054778.002		TRH C6-C10	µg/L	50	1000	946.63	60 - 140	108		
		TRH C6-C9	µg/L	40	840	818.71	60 - 140	102		

MATRIX SPIKES

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Mercury (dissolve	od) in Water					Method: ME	E-(AU)-[ENV]AN311/AN312
QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE125983.001	LB054782.004	Mercury	mg/L	0.0001	0.0083	-0.001	0.008	103

Mercury in Soil

Mercury in Soil					Meth	od: ME-(AU)-[ENV]AN312	
QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE125990.001	LB054815.004	Mercury	mg/kg	0.01	0.36	0.20	0.2	79
SE126027.045	LB054816.004	Mercury	mg/kg	0.01	0.18	<0.01	0.2	85

Metals in Water (Dissolved) by ICPOES

Metals in Water	(Dissolved) by ICPOES					Method: ME	-(AU)-[ENV	AN320/AN321
QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE126027.043	LB054781.004	Arsenic, As	mg/L	0.02	2.0	0.02	2	98
		Cadmium, Cd	mg/L	0.001	2.1	<0.001	2	104
		Chromium, Cr	mg/L	0.005	2.1	<0.005	2	103
		Copper, Cu	mg/L	0.005	2.0	<0.005	2	102
		Lead, Pb	mg/L	0.02	1.9	<0.02	2	96
		Nickel, Ni	mg/L	0.005	2.1	<0.005	2	103
		Zinc, Zn	mg/L	0.01	2.1	<0.01	2	104

PAH (Polynuclea	r Aromatic Hydrocarbo	ons) in Soil					Met	nod: ME-(Al	J)-[ENV]AN420
QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE126027.021	LB054726.022		Naphthalene	mg/kg	0.1	3.3	<0.1	4	81
			2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	-	-
			1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	-	-
			Acenaphthylene	mg/kg	0.1	3.3	<0.1	4	83
			Acenaphthene	mg/kg	0.1	3.6	<0.1	4	89
			Fluorene	mg/kg	0.1	<0.1	<0.1		-
			Phenanthrene	mg/kg	0.1	4.1	<0.1	4	99
			Anthracene	mg/kg	0.1	3.8	<0.1	4	94
			Fluoranthene	mg/kg	0.1	3.2	<0.1	4	81
			Pyrene	mg/kg	0.1	3.2	<0.1	4	81
			Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	-	-
			Chrysene	mg/kg	0.1	<0.1	<0.1	-	-
			Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	<0.1	-	-
			Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	-	-
			Benzo(a)pyrene	mg/kg	0.1	4.0	<0.1	4	101
			Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	-	-
			Dibenzo(a&h)anthracene	mg/kg	0.1	<0.1	<0.1	-	-
			Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	-	-
			Total PAH	mg/kg	0.8	28	<0.8	-	-
			Carcinogenic PAHs (as BaP TEQ)-assume results	TEQ	0.2	4.0	<0.2	-	-
		Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.4	0.4	-	72
			2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	0.4	-	76
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.5	0.4	-	108
Total Cyanide in	soil by Discrete Analys	ser (Aquakem)					Method: ME	-(AU)-[ENV	JAN077/AN287
QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE126027.045	LB054825.004		Total Cyanide	mg/kg	0.1	0.4	0.1	0.25	95

Total Departure in Soil

Total Phenolics in	n Soil				Method: ME-(AU)-[EN LOR Result Original Spike Rec			J)-[ENV]AN289
QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE126027.056	LB054826.013	Total Phenols	mg/kg	0.1	2.5	<0.1	2.5	96

Total Passwarahla	Methods ME (ALD TEND (AND (AND A)	
QC Sample	Sample Number	

MATRIX SPIKES

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Total Recoverab	le Metals in Soil by l	CPOES from EPA	200.8 Digest (continued)				Method: ME	-(AU)-[ENV	JAN040/AN320
QC Sample	Sample Number	r	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE125990.001	LB054811.004		Arsenic, As	mg/kg	3	50	6	50	87
			Cadmium, Cd	mg/kg	0.3	45	0.5	50	89
			Chromium, Cr	mg/kg	0.3	57	10	50	94
			Copper, Cu	mg/kg	0.5	76	36	50	79
			Lead, Pb	mg/kg	1	220	130	50	181 ④
			Nickel, Ni	mg/kg	0.5	54	5.8	50	96
			Zinc, Zn	mg/kg	0.5	260	250	50	11 ④
SE126027.045	LB054812.004		Arsenic, As	mg/kg	3	44	3	50	82
			Cadmium, Cd	mg/kg	0.3	43	0.4	50	85
			Chromium, Cr	mg/kg	0.3	55	13	50	84
			Copper, Cu	mg/kg	0.5	110	72	50	76
			Lead, Pb	mg/kg	1	62	11	50	101
			Nickel, Ni	mg/kg	0.5	110	75	50	73
			Zinc, Zn	mg/kg	0.5	97	45	50	103
VOC's in Soil							Method: ME	-(AU)-[ENV	JAN433/AN434
QC Sample	Sample Number	r	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE125990.001	LB054731.004	Monocyclic	Benzene	mg/kg	0.1	2.6	<0.1	2.9	88
		Aromatic	Toluene	 mg/kg	0.1	3.1	0.3	2.9	98
			Ethylbenzene	mg/kg	0.1	2.6	<0.1	2.9	89
			m/p-xylene	mg/kg	0.2	5.1	<0.2	5.8	88
			o-xylene	mg/kg	0.1	2.7	<0.1	2.9	91
		Polycyclic	Naphthalene	mg/kg	0.1	<0.1	<0.1	-	-
		Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	5.0	5.5	5	100
			d4-1,2-dichloroethane (Surrogate)	mg/kg	-	5.5	4.7	5	110
			d8-toluene (Surrogate)	mg/kg	-	3.5	5.8	5	70
			Bromofluorobenzene (Surrogate)	 mg/kg	-	5.3	5.7	5	106
		Totals	Total Xylenes*	 mg/kg	0.3	7.8	<0.3	-	-
			Total BTEX*	mg/kg	0.6	16	<0.6	-	-
Volatile Petroleu	m Hydrocarbons in S	Soil				Met	hod: ME-(AU)-[I	ENVJAN433	/AN434/AN410
QC Sample	Sample Number	r	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE125990.001	LB054731.004		TRH C6-C10	mg/kg	25	<25	<25	24.65	92
			TRH C6-C9	mg/kg	20	21	<20	23.2	91
		Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	5.0	5.5	5	100
			d4-1,2-dichloroethane (Surrogate)	mg/kg	-	5.5	4.7	5	110
			d8-toluene (Surrogate)	mg/kg	-	3.5	5.8	5	70
			Bromofluorobenzene (Surrogate)	mg/kg	-	5.3	5.7	5	106
		VPH F	Benzene (F0)	mg/kg	0.1	2.6	<0.1	-	-
		Bands	TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	7.25	97

Matrix spike duplicates are calculated as Relative Percent Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The original result is the analyte concentration of the matrix spike. The Duplicate result is the analyte concentration of the matrix spike duplicate.

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

PAH (Polynuclear Aromatic Hydrocarbons) in Soil

PAH (Polynuclea	r Aromatic Hydrocarbons) in Soil					Me	thod: ME-(AU)	-[ENV]AN420
QC Sample	Sample Number		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE126027.021	LB054726.023		Naphthalene	mg/kg	0.1	3.3	3.3	33	1
			2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	200	-
			1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	200	-
			Acenaphthylene	mg/kg	0.1	3.3	3.5	33	6
			Acenaphthene	mg/kg	0.1	3.6	3.8	33	5
			Fluorene	mg/kg	0.1	<0.1	<0.1	200	-
			Phenanthrene	mg/kg	0.1	4.1	4.3	32	5
			Anthracene	mg/kg	0.1	3.8	3.9	33	2
			Fluoranthene	mg/kg	0.1	3.2	3.4	33	4
			Pyrene	mg/kg	0.1	3.2	3.3	33	0
			Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	200	-
			Chrysene	mg/kg	0.1	<0.1	<0.1	200	-
			Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	<0.1	200	-
			Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	200	-
			Benzo(a)pyrene	mg/kg	0.1	4.0	3.6	33	12
			Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	200	-
			Dibenzo(a&h)anthracene	mg/kg	0.1	<0.1	<0.1	200	-
			Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	200	-
			Total PAH	mg/kg	0.8	28	29	33	-
			Carcinogenic PAHs (as BaP TEQ)-assume results	TEQ	0.2	4.0	3.6	15	-
	Su	rogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.4	0.4	30	0
			2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	0.4	30	3
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.5	0.5	30	4

TRH (Total Recoverable Hydrocarbons) in Soil

QC Sample	Sample Number	Parameter	Units	LOR	Duplicate
SE126022.001	LB054726.005	TRH C10-C14	mg/kg	20	34
		TRH C15-C28	mg/kg	45	<45
		TRH C29-C36	mg/kg	45	<45
		TRH C37-C40	mg/kg	100	<100
		TRH C10-C36 Total	mg/kg	110	<110
		TRH C10-C40 Total	mg/kg	210	<210
	TRH F Bands	TRH >C10-C16 (F2)	mg/kg	25	33
		TRH >C16-C34 (F3)	mg/kg	90	<90
		TRH >C34-C40 (F4)	mg/kg	120	<120

Method: ME-(AU)-[ENV]AN403

Method: ME-(AU)-[ENV]AN433/AN434

QC Sample	Sample Numbe	r	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE125990.001	LB054731.005	Monocyclic	Benzene	mg/kg	0.1	2.6	2.6	34	2
		Aromatic	Toluene	mg/kg	0.1	3.1	3.3	33	6
			Ethylbenzene	mg/kg	0.1	2.6	2.7	34	5
			m/p-xylene	mg/kg	0.2	5.1	5.1	34	0
			o-xylene	mg/kg	0.1	2.7	2.6	34	2
		Polycyclic	Naphthalene	mg/kg	0.1	<0.1	<0.1	200	-
		Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	5.0	4.2	50	18
			d4-1,2-dichloroethane (Surrogate)	mg/kg	-	5.5	5.7	50	4
			d8-toluene (Surrogate)	mg/kg	-	3.5	4.0	50	12
			Bromofluorobenzene (Surrogate)	mg/kg	-	5.3	5.3	50	1
		Totals	Total Xylenes*	mg/kg	0.3	7.8	7.7	34	-
			Total BTEX*	mg/kg	0.6	16	16	34	-
Volatile Petroleu	m Hydrocarbons in	Soil				Met	thod: ME-(AU)	-[ENV]AN433//	N434/AN41 0
QC Sample	Sample Numbe	ər	Parameter	Units	LOR				

VOC's in Soil

Matrix spike duplicates are calculated as Relative Percent Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The original result is the analyte concentration of the matrix spike. The Duplicate result is the analyte concentration of the matrix spike duplicate.

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Method: ME-(AU)-[ENV]AN433/AN434/AN410 Volatile Petroleum Hydrocarbons in Soil (continued) QC Sample Sample Number Parameter Units LOR Original Duplicate Criteria % RPD % SE125990.001 LB054731.005 TRH C6-C10 mg/kg 25 <25 <25 141 2 TRH C6-C9 mg/kg 20 21 21 124 1 30 Surrogates Dibromofluoromethane (Surrogate) mg/kg 5.0 4.2 18 5.5 5.7 30 4 d4-1,2-dichloroethane (Surrogate) mg/kg d8-toluene (Surrogate) mg/kg 3.5 4.0 30 12 Bromofluorobenzene (Surrogate) 5.3 5.3 30 1 mg/kg -VPH F Bands Benzene (F0) mg/kg 0.1 2.6 2.6 34 TRH C6-C10 minus BTEX (F1) 25 <25 <25 200 9 mg/kg

SE126027 R0

Samples analysed as received.

Solid samples expressed on a dry weight basis.

QC criteria are subject to internal review according to the SGS QA/QC plan and may be provided on request or alternatively can be found here: http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical%20Documents/MP-AU-ENV-QU-022%20QA%20QC%20Plan.pdf

- * Non-accredited analysis.
- Sample not analysed for this analyte.
- ^ Analysis performed by external laboratory.
- IS Insufficient sample for analysis.
- LNR Sample listed, but not received.
- LOR Limit of reporting.
- QFH QC result is above the upper tolerance.
- QFL QC result is below the lower tolerance.
- ① At least 2 of 3 surrogates are within acceptance criteria.
- ② RPD failed acceptance criteria due to sample heterogeneity.
- ③ Results less than 5 times LOR preclude acceptance criteria for RPD.
- ④ Recovery failed acceptance criteria due to matrix interference.
- Recovery failed acceptance criteria due to the presence of significant concentration of analyte (i.e. the concentration of analyte exceeds the spike level).
- 6 LOR was raised due to sample matrix interference.
- ⁽⁷⁾ LOR was raised due to dilution of significantly high concentration of analyte in sample.
- Image: Image:
- Recovery failed acceptance criteria due to sample heterogeneity.
- 10
- t Refer to Analytical Report comments for further information.

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service, available on request and accessible at http://www.sgs.com/en/Terms-and-Conditions/General-Conditions-of-Services-English.aspx. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any other holder of this document is advised that information contained herein reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This test report shall not be reproduced, except in full.

ANALYTICAL REPORT

- CLIENT DETAILS		LABORATORY DETAIL	_S
Contact Client	John Xu Geotechnique	Manager Laboratory	Huong Crawford SGS Alexandria Environmental
Address	P.O. Box 880 PENRITH NSW 2751	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone Facsimile	02 4722 2700 02 4722 6161	Telephone Facsimile	+61 2 8594 0400 +61 2 8594 0499
Email	john.xu@geotech.com.au	Email	au.environmental.sydney@sgs.com
Project	13138-1 - Canterbury	SGS Reference	SE126027 R0
Order Number	(Not specified)	Report Number	0000078898
Samples	57	Date Reported	27 Mar 2014
p.50		Date Received	19 Mar 2014

COMMENTS

Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562(4354).

No respirable fibres detected in all samples using trace analysis technique.

Asbestos analysed by Approved Identifier Yusuf Kuthpudin.

- SIGNATORIES -

Duoms

Deanne Norris Organic Chemist

Kamrul Ahsan Senior Chemist

Dong Liang Metals/Inorganics Team Leader

kmln

Ly Kim Ha Organic Section Head

flores

Huong Crawford Production Manager

S. Ravender

Ravee Sivasubramaniam Asbestos Analyst

SGS Australia Pty Ltd ABN 44 000 964 278 Environmental Services

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australia t +61 2 8594 0400 f +61 2 8594 0499 Australia

Member of the SGS Group

www.au.sgs.com

ANALYTICAL REPORT

RESULTS _							
Fibre Identifica	tion in soil				M	ethod AN602	
Laboratory Reference	Client Reference	Matrix	Sample Description	Date Sampled	Fibre Identification		Est.%w/w
SE126027.001	BH1 0.05-0.2	Soil	33g Soil,clay,rocks	18 Mar 2014	No Asbestos Found		<0.01
SE126027.005	BH4 0-0.3	Soil	135g Sand,soil,rocks	18 Mar 2014	No Asbestos Found		<0.01
SE126027.009	BH7 0-0.3	Soil	144g Sand,soil,rocks	18 Mar 2014	No Asbestos Found		<0.01
SE126027.014	BH10 0.15-0.45	Soil	135g Sand,soil,rocks	18 Mar 2014	No Asbestos Found Organic Fibres Detected		<0.01
SE126027.019	BH13 0.3-0.6	Soil	106g Sand,soil,rocks	18 Mar 2014	No Asbestos Found Organic Fibres Detected		<0.01
SE126027.028	BH16 2.1-2.4	Soil	169g Clay,soil,rocks	18 Mar 2014	No Asbestos Found		<0.01
SE126027.032	BH17 0.2-0.5	Soil	201g Clay,sand,soil,r ocks	18 Mar 2014	No Asbestos Found		<0.01
SE126027.036	BH21 0.2-0.5	Soil	230g Sand,soil,rocks	18 Mar 2014	No Asbestos Found		<0.01
SE126027.038	BH21 1.3-1.6	Soil	264g Clay,soil,rocks	18 Mar 2014	No Asbestos Found		<0.01

METHOD SUMMARY

METHOD	METHODOLOGY SUMMARY
AN602	Qualitative identification of chrysotile, amosite and crocidolite in bulk samples by polarised light microscopy (PLM) in conjunction with dispersion staining (DS). AS4964 provides the basis for this document. Unequivocal identification of the asbestos minerals present is made by obtaining sufficient diagnostic `clues`, which provide a reasonable degree of certainty, dispersion staining is a mandatory `clue` for positive identification. If sufficient `clues` are absent, then positive identification of asbestos is not possible. This procedure requires removal of suspect fibres/bundles from the sample which cannot be returned.
AN602	Fibres/material that cannot be unequivocably identified as one of the three asbestos forms, will be reported as unknown mineral fibres (umf).
AN602	AS4964.2004 Method for the Qualitative Identification of Asbestos in Bulk Samples, Section 8.4, Trace Analysis Criteria, Note 4 states: "Depending upon sample condition and fibre type, the detection limit of this technique has been found to lie generally in the range of 1 in 1,000 to 1 in 10,000 parts by weight, equivalent to 1 to 0.1 g/kg."

FOOTNOTES

Amosite	-	Brown Asbestos	NA	-	Not Analysed
Chrysotile	-	White Asbestos	LNR	-	Listed, Not Required
Crocidolite	-	Blue Asbestos	*	-	Not Accredited
Amphiboles	-	Amosite and/or Crocidolite	**	-	Indicative data, theoretical holding time exceeded.

This report does not comply with the analytical reporting recommendations in the Western Australian Department of Health Guidelines for the Assessment and Remediation and Management of Asbestos Contaminated sites in Western Australia - May 2009.

Sampled by the client.

Where reported: 'Asbestos Detected': Asbestos detected by polarized light microscopy, including dispersion staining. Where reported: 'No Asbestos Found': No Asbestos Found by polarized light microscopy, including dispersion staining. Where reported: 'UMF Detected': Mineral fibres of unknown type detected by polarized light microscopy, including dispersion staining. Confirmation by another independent analytical technique may be necessary.

Even after disintegration it can be very difficult, or impossible, to detect the presence of asbestos in some asbestos -containing bulk materials using polarised light microscopy. This is due to the low grade or small length or diameter of asbestos fibres present in the material, or to the fact that very fine fibres have been distributed intimately throughout the materials.

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here : http://www.sgs.com.au.pv.sgsv3/~/media/Local/Australia/Documents/Technical%20Documents/MP-AU-ENV-QU-022%20QA%20QC%20Plan.pdf

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/en/Terms-and-Conditions/General-Conditions-of-Services-English.aspx. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This test report shall not be reproduced, except in full.

Loc received 2163120140 9158An.

GFOTECHNIQUE PTY I TD

Lemko F	Place H NSW 275	0		PEN	P O RITH NS	Box 880	Fax: (02) 4722	6161					Page	1	of	6
TO: PH: ATTN:	SGS ENV UNIT 16 33 MADD ALEXAND 02 8594 0 MS EMILY	IRONMENTAL DX STREET DRIA NSW 201 400 (YIN	SERVICES		FAX:	02 8594 04	199	Sampling B Project Mar	y: nager:	JX		Job No: Project: Location: Ca	13138/1			
	_	Sampling det	tails		Samp	le type					1 0044					
** L	ocation	Depth (m)	Date	Time	Soil	Water	Result	s required	l by: 27	th Mar	ch 2014 -	Standard	Turnar	ound I	Time	
							Metals As, Cd, Cr, Cu, Pb, Hg, Ni and Zn	TPH* & BTEX	РАН	рН	CEC, TOC (%)	ASBESTOS				KEEP SAMPLE
1	BH1	0.05-0.2	18/03/2014	-	SG/SP			~	1	1	~	~				YES
	BH1	0.25-0.35	18/03/2014		SG	1					Januar 1					YES
2	BH2	0.1-0.4	18/03/2014		SG/SP											YES
-	BH2	0.45-0.55	18/03/2014	1	SG										a second	YES
3	BH3	0-0.3	18/03/2014		SG/SP				~					_		YES
9	BH3	0.55-0.65	18/03/2014		SG		\checkmark			1	1	-				YES
5	BH4	0-0.3	18/03/2014		SG/SP			~	~	-	~	~				YES
	BH4	0.55-0.65	18/03/2014	- (4)	SG											YES
6	BH5	0-0.15	18/03/2014		SG/SP						i.	1				YES
7	BH6	0-0.3	18/03/2014		SG/SP				1		1	0		_		YES
8	BH6	0.45-0.55	18/03/2014	-	SG		1			×	~					YES
9	BH7	0-0.3	18/03/2014		SG/SP			~	1	1	~	~				YES
			Rel	inquished	by							Received by				
	Name	13		Signatu	re		Date	C.	Name			Signature			Date	1 870.0
Lawred	JOHN XU jx					21/03/2014	JC.	usa		6	b. dr		1410	23/14	1.20	
WG WP	IG Water sample, glass bottle IP Water sample, plastic bottle					Soil sampl	e (glass jar)		SP ✓	Soil sam Test requ	ple (plastic bag lired	1)	•	Purge & 1	Ггар	

Lemko	Place	0		DEN	P O	Box 880	Fax: (02) 4722 2	6161					Page	2	of	6
PH:	SGS ENVIRONMENTAL SERVICES UNIT 16 33 MADDOX STREET ALEXANDRIA NSW 2015 02 8594 0400 : MS EMILY YIN Sampling details				FAX:	02 8594 04	199	Sampling E Project Mar	ly: nager:	LY		Job No: Project: Location: Ca	13138/1 anterbury	L		
		Sampling det	tails		Samp	le type	27.073	282.5.175			1		12 3 6	Tort 12.		
	Location	Depth (m)	Date	Time	Soil	Water	Result	s required	l by: 27	th Mar	ch 2014 -	Standard	Turnar	ound	lime	
							Metals As, Cd, Cr, Cu, Pb, Hg, Ni and Zn	TPH* & BTEX	РАН	рН	CEC, TOC (%)	ASBESTOS				KEEP SAMPLE
4.1	BH7	0.55-0.65	18/03/2014		SG	a		10				1				YES
10	BH8	0.05-0.2	18/03/2014		SG/SP			10				(1	YES
11	BH8	0.25-0.35	18/03/2014		SG	1	1	1.2		1	~			1	N	YES
12	BH9	0.05-0.2	18/03/2014	-	SG/SP											YES
	BH9	0.25-0.35	18/03/2014	ų.	SG									1.00		YES
13	BH10	0-0.15	18/03/2014		SG/SP					1	1					YES
14	BH10	0.15-0.45	18/03/2014		SG/SP			~	1			~			1	YES
-	BH10	0.7-0.8	18/03/2014		SG											YES
12	BH11	0-0.15	18/03/2014		SG/SP			10.000		1					1.	YES
16	BH11	0.2-0.5	18/03/2014	*	SG/SP				~				1		1	YES
-	BH11	0.65-0.75	18/03/2014	4	SG											YES
17	BH12	0-0.15	18/03/2014		SG/SP					1	~					YES
			Rel	inquished	by			1.				Received by				
-	Name			Signatu	re		Date		Name		1	Signature		1010	Date	
10.000	JOHN >	U		jx	_		21/03/2014	S	usa		0	1.00-1		1910	13114 @	01.20
WG Water sample, glass bottle SG Soil sample (glass jar) WP Water sample, plastic bottle					e (glass jar)		SP ✓	Soil sam Test requ	ple (plastic bag iired	3)		Purge &	Тгар			

Lemk	Place ITH NSW 275	0		PEN	P O RITH NS	Box 880 W 2751	Tel: (02) 4722 : Fax: (02) 4722	2700 6161					Page	3	of	6
TO: PH:	SGS ENV UNIT 16 33 MADD ALEXANI 02 8594 0	IRONMENTAL OX STREET ORIA NSW 20' 400	SERVICES		FAX:	02 8594 04	499	Sampling E Project Mar	ly: nager:	LY		Job No: Project: Location: Ca	13138/1		01	
ATTN	WS EMIL	Sampling de	taile		Samo	lo tuno						-				
	Location	Depth (m)	Date	Time	Soil	Water	Result	ts required	by: 27	th Mar	ch 2014 -	Standard	Turnar	ound 1	Time	
							Metals As, Cd, Cr, Cu, Pb, Hg, Ni and Zn	TPH* & BTEX	РАН	pН	CEC, TOC (%)	ASBESTOS				KEEP SAMPLE
18	BH13	0-0.15	18/03/2014		SG/SP											YES
19	BH13	0.3-0.6	18/03/2014		SG/SP			1	~		1	1				YES
-	BH13	0.95-1.05	18/03/2014	÷.	SG	1.000										YES
20	BH14	0-0.15	18/03/2014	÷	SG/SP				-							YES
21	BH14	0.2-0.5	18/03/2014	-	SG/SP				1		1		1	1.1		YES
	BH14	0.75-0.85	18/03/2014		SG			1				1				YES
222	BH15	0-0.15	18/03/2014		SG/SP						1		1			YES
22	BH15	0.2-0.5	18/03/2014		SG/SP	1			~			-				YES
24	BH15	0.9-1.2	18/03/2014	19	SG/SP				1							YES
25	BH15	1.25-1.35	18/03/2014		SG		1					2				YES
240	BH16	0-0.1	18/03/2014	*	SG/SP			1000								YES
41	BHID	0.1-0.4	18/03/2014	-	SG/SP			9								YES
	Nama		Reli	inquished I	бу							Received by			and the second	
	JOHN X	M.		Signatur	e		Date		Name			Signature			Date	
Legen	t:	0		JX			21/03/2014		usa		1	4-0-4		1910	3114	
WG WP	Water sam Water sam	ple, glass bottle ple, plastic bott	e Ile		SG	Soil sample	e (glass jar)		SP ✓	Soil samp Test requ	ole (plastic bag iired)		Purge & 1	Trap	

GFOTECHNIQUE PTY I TD

PENRIT TO:	Place H NSW 275 SGS ENV	50 /IRONMENTA	L SERVICES	PEI	P C	D Box 880 SW 2751	Tel: (02) 4722 Fax: (02) 4722	2700 6161					1			
PH:	UNIT 16 33 MADD ALEXAND 02 8594 0	OX STREET DRIA NSW 20 400	015		FAX:	02 8594 0	499	Sampling Project Ma	By: nager:	LY		Job No: Project:	Page 13138/1	4	of	6
ATTN.	WS EWIL)	Sampling de	otaile									Location:	Canterbury			
		l l	lans		Samp	ole type						-				
L	ocation	Depth (m)	Date	Time	Soil	Water	Result	s required	by: 27	th Mar	ch 2014 -	Standar	d Turnard	ound T	ime	
							Metals As, Cd, Cr, Cu,	TPH* &	РАН	DH	CEC, TOC	ASDEGTO				
E	3H16	1.1-1.4	18/03/2014		SCIED	Sec. 12	Pb, Hg, Ni and Zn	BTEX		pin	(%)	ASBESTOS				KEEP
28 E	3H16	2.1-2.4	18/03/2014		SCIED					-	-					SAMPLE
29 E	3H16	3.1-3.4	18/03/2014		SCISP			1	1	V						YES
SO E	3H16	3.45-3.55	18/03/2014	-	SG	-						v				YES
B	3H17	0-0.15	18/03/2014	-	SC/SP		V			-	1		1.2.2.1.1			YES
32 B	3H17	0.2-0.5	18/03/2014	-	SCISP		and the second second				1					YES
В	H17	0.7-1.0	18/03/2014		SCISP			1	1	V	1					YES
В	H17	1.25-1.35	18/03/2014	-	SC							v				YES
33 B	H18	0-0.15	18/03/2014		SCIED	-				-	1		A REAL PROPERTY.			YES
34 B	H19	0-0.15	18/03/2014	-	SCIED			1.0		-						YES
SS BI	H20	0-0.15	18/03/2014	1.12	SCIED								E			YES
B	H21	0-0.15	18/03/2014		SCISP			1				-				YES
			Relin	auished h	V			1								YES
	Name		1	Signature							L					YES
dend.	JOHN XU			ix	-		Date		Name		F	Signation				
G I	Water sample	e, glass bottle	1		SG S	Soil samala	21/03/2014		pdu		-6	Signature		19/03	Date	
<u>P 1</u>	Water sample	e, plastic bottle	9			on sample	giass jar)	S	P	Soil sampl Test requir	e (plastic bag) ed		* Pu	rge & Trap	,	

Lemk	o Place				Р	O Box 880	Tel: (02) 4722 2 Fax: (02) 4722 6	700 6161								
PENF	RITH NSW 275	0		PE	ENRITH I	NSW 2751							Page	5	of	6
TO:	SGS ENV UNIT 16 33 MADDO ALEXAND	IRONMENTAL OX STREET DRIA NSW 201	SERVICES					Sampling B	y:	LY		Job No: Project:	13138/1			
PH:	02 8594 0	400			FAX:	02 8594 0499		Project Man	ager:	XL		Location: Ca	nterbury			
ATTN	: MS EMILY	YIN Sampling do	aile	_	Sam	nlo tuno										
-		Junping de			Jain	pie type	Res	ults requir	ed by:	27th M	arch 201	1 - Standa	rd Tur	naround	Time	
	Location	Depth (m)	Date	Time	Soil	Water		anco roquin	ou sy.			otunidu	ia ian	around	TIME	
							Metals As, Cd, Cr, Cu, Pb, Hg, Ni and Zn	TPH* & BTEX	РАН	рН	CEC, TOC (%)	ASBESTOS	BTEX	OCP, OPP & PCB	TOTAL PHENOLS & CYANIDE	KEEP SAMPLE
36	BH21	0.2-0.5	18/03/2014		SG/SP			~	~	-	1	~				YES
37	BH21	0.8-1.1	18/03/2014	-	SG/SP			 11.537 Tel. 				1				YES
38	BH21	1.3-1.6	18/03/2014	*	SG/SP	1. St.		1	~	1	1	~				YES
39	BH21	1.75-1.85	18/03/2014	*	SG		~	IN SUCCESS			1					YES
40	X1		18/03/2014		SG			1.0								YES
41	X2	-	18/03/2014		SG										1	YES
42	X3	-	18/03/2014		SG	1.		1	~		1		- C	1	11	YES
	X4	*	18/03/2014		SG			1.000				1				YES
	X5	1	18/03/2014	+	SG											YES
	X6		18/03/2014	A	SG											YES
	Duplicate D1		18/03/2014	÷	SG					0	1	1200			1	YES
43	Rinsate R1		18/03/2014	8		WG/Vial	~	1	1					1	~	YES
44 7	ripspike TS1		18/03/2014										1			YES
-			Re	elinquished	by							Received b	V			1
	Name		4.	Signati	ure		Date		Name			Signature	-		Date	
JOHN XU jx					21/03/2014		Suba		K	A Cont		1910	3114 0			
Legend: WG Water sample, glass bottle WP Water sample, plastic bottle					plass jar)		SP √	Soil sam	ole (plastic bag iired)		* Purge & Tr	ар			

SGS ENVIRONMENTAL SERVICES

Sampling Date: Sampled by: 18/3/2014 LY Project Manager: JX

Job No: 13138/1

Location: Canterbury

Results Required by: 27th March 2014 - Standard TAT

Page 6 of 6

Composite Sample	Sub-Samples	Analyte						
		Heavy Metals*	OCP	OPP	PCB	Total Phenols	Total Cyanides	
C1	BH1 (0.05-0.2m) + BH8 (0.05-0.2m) + BH9 (0.05-0.2m)	~		-	-	~		
C2	BH2 (0.1 <mark>-</mark> 0.4m) + BH4 (0-0.3m) + <mark>B</mark> H5 (0-0.15m)	~			~	~		
C3	BH3 (0- <mark>0</mark> .3m) + BH6 (0-0.3m) + BH7 (0.05-0.2m)	-			~	~	~	
C4	BH10 (0-0. <mark>1</mark> 5m) + BH14 (00.15m) + BH15 (0-0.15m)				-	1		
C5	BH11 (0-0. <mark>1</mark> 5m) + BH12 (0-0.15m) + BH13 (0-0.15m)	-	-	~	-	_		
C6	BH16 (0-0 <mark>.</mark> 1m) + BH17 (0-0.15m) + BH18 (0-0.15m)		-	~	1		1	
C7	BH19 (0-0. <mark>15m) + BH20 (0-0.15m) + BH21 (0-015m)</mark>		-	~	-	1.2.1		
C8	BH10 (0.15-0.45m) + BH14 (0.2-0.5m) + BH15 (0.2-0.5m)		-	~	,	>	-	
C9	BH11 (0.2-0.5m) + BH13 (0.3-0.6m) + BH15 (0.9-1.2m)			~	~	>	~	
C10	BH16 (0.1-0.4m) + BH17 (0.2-0.5m) + BH21 (0.2-0.5m)	~		~	~	~	~	
C11	BH16 (2.1-2.4m) + BH16 (3.1-3.4m) + BH21 (0.8-1.1m)	~	-	~	~	~	~	
Duplicate D101	X1 + X2 + X3	~		~	~			

*: Heavy Metals include As, Cd, Cr, Cu, Pb, Hg, Ni and Zn

Test required
 OCP: Organochlorine Pesticides
 OPP: Organophosphorus Pesticides
 PCB: Polychlorinated Biphenyls

GEOTECHNIQUE PTY LTD (JOHN XU) 21/3/2014

SAMPLE RECEIPT ADVICE

CLIENT DETAILS	S	LABORATORY DETA	AILS	
Contact	John Xu	Manager	Huong Crawford	
Client	Geotechnique	Laboratory	SGS Alexandria Environmental	
Address	P.O. Box 880 PENRITH NSW 2751	Address	Unit 16, 33 Maddox St Alexandria NSW 2015	
Telephone	02 4722 2700	Telephone	+61 2 8594 0400	
Facsimile	02 4722 6161	Facsimile	+61 2 8594 0499	
Email	john.xu@geotech.com.au	Email	au.environmental.sydney@sgs.com	
Project	13138-1 - Canterbury	Samples Received	Wed 19/3/2014	
Order Number	(Not specified)	Report Due	Thu 27/3/2014	
Samples	57	SGS Reference	SE126027	

_ SUBMISSION DETAILS

This is to confirm that 57 samples were received on Wednesday 19/3/2014. Results are expected to be ready by Thursday 27/3/2014. Please quote SGS reference SE126027 when making enquiries. Refer below for details relating to sample integrity upon receipt.

- Sample counts by matrix Date documentation received Samples received without headspace Sample container provider Samples received in correct containers Sample cooling method Complete documentation received
- 43 Soils, 1 Water 21/3/14@9:58/15:37 Yes SGS Yes Ice Bricks Yes

Type of documentation received Samples received in good order Sample temperature upon receipt Turnaround time requested Sufficient sample for analysis Samples clearly labelled COC Yes 3.9°C Standard Yes Yes

Samples will be held for one month for water samples and two months for soil samples from date of report, unless otherwise instructed.

COMMENTS

Instructions received at SGS on 21/03/2014@09:58am and 03:37pm.

16 soil and 1 water samples, which were not marked for analyses on the COC, have been placed on hold. These samples will not be processed.

To the extent not inconsistent with the other provisions of this document and unless specifically agreed otherwise in writing by SGS, all SGS services are rendered in accordance with the applicable SGS General Conditions of Service accessible at

http://www.sgs.com/en/Terms-and-Conditions/General-Conditions-of-Services-English.aspx as at the date of this document.

Attention is drawn to the limitations of liability and to the clauses of indemnification.

Alexandria NSW 2015 Alexandria NSW 2015 t +61 2 8594 0400

SAMPLE RECEIPT ADVICE

Project 13138-1 - Canterbury

SE126027

CLIENT DETAILS

Client Geotechnique

- SUMMARY OF ANALYSIS

No.	Sample ID	PAH (Polynuclear Aromatic Hydrocarbons) in	TRH (Total Recoverable Hydrocarbons) in Soil	VOC's in Soil	Volatile Petroleum Hydrocarbons in Soil		
001	BH1 0.05-0.2	23	9	12	8		
003	BH3 0-0.3	23	-	-	-		
005	BH4 0-0.3	23	9	12	8		
007	BH6 0-0.3	23	-	-	-		
009	BH7 0-0.3	23	9	12	8		
014	BH10 0.15-0.45	23	9	12	8		
016	BH11 0.2-0.5	23	-	-	-		
019	BH13 0.3-0.6	23	9	12	8		
021	BH14 0.2-0.5	23	-	-	-		
023	BH15 0.2-0.5	23	-	-	-		
024	BH15 0.9-1.2	23	-	-	-		

CONTINUED OVERLEAF

The above table represents SGS Environmental Services' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details.

Testing as per this table shall commence immediately unless the client intervenes with a correction.

SAMPLE RECEIPT ADVICE

CLIENT DETAILS

Client Geotechnique

Project 13138-1 - Canterbury

SUMMARY OF ANALYSIS									
No.	Sample ID	OC Pesticides in Soil	OP Pesticides in Soil	PAH (Polynuclear Aromatic Hydrocarbons) in	PCBs in Soil	Total Phenolics in Soil	TRH (Total Recoverable Hydrocarbons) in Soil	VOC's in Soil	Volatile Petroleum Hydrocarbons in Soil
028	BH16 2.1-2.4	-	-	23	-	-	9	12	8
032	BH17 0.2-0.5	-	-	23	-	-	9	12	8
036	BH21 0.2-0.5	-	-	23	-	-	9	12	8
038	BH21 1.3-1.6	-	-	23	-	-	9	12	8
042	X3	-	-	23	-	-	9	12	8
044	Tripspike TS1	-	-	-	-	-	-	12	-
045	C1	28	13	-	11	1	-	-	-
046	C2	28	13	-	11	1	-	-	-
047	C3	28	13	-	11	1	-	-	-
048	C4	28	13	-	-	-	-	-	-

CONTINUED OVERLEAF

The above table represents SGS Environmental Services' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details.

Testing as per this table shall commence immediately unless the client intervenes with a correction.

CLIENT DETAILS

Client Geotechnique

- SUMMARY OF ANALYSIS

Project 13138-1 - Canterbury

No.	Sample ID	OC Pesticides in Soil	OP Pesticides in Soil	PCBs in Soil	Total Phenolics in Soil
049	C5	28	13	-	-
050	C6	28	13	-	-
051	C7	28	13	-	-
052	C8	28	13	11	1
053	C9	28	13	11	1
054	C10	28	13	11	1
055	C11	28	13	11	1
056	Duplicate D101	28	13	11	1

_ CONTINUED OVERLEAF

The above table represents SGS Environmental Services' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details.

CLIENT DETAILS

Client Geotechnique

Project 13138-1 - Canterbury

SUMMARY	OF ANALYSIS							
No.	Sample ID	Exchangeable Cations and Cation Exchange Capacity	Fibre Identification in soil	Mercury in Soil	Moisture Content	pH in soil (1:5)	TOC in Soil	Total Recoverable Metals in Soil by ICPOES from
001	BH1 0.05-0.2	13	2	-	1	1	1	-
003	BH3 0-0.3	-	-	-	1	-	-	-
004	BH3 0.55-0.65	13	-	1	1	1	1	7
005	BH4 0-0.3	13	2	-	1	1	1	-
007	BH6 0-0.3	-	-	-	1	-	-	-
008	BH6 0.45-0.55	13	-	1	1	1	1	7
009	BH7 0-0.3	13	2	-	1	1	1	-
011	BH8 0.25-0.35	13	-	1	1	1	1	7
013	BH10 0-0.15	13	-	-	1	1	1	-
014	BH10 0.15-0.45	-	2	-	1	-	-	-
016	BH11 0.2-0.5	-	-	-	1	-	-	-
017	BH12 0-0.15	13	-	-	1	1	1	-
019	BH13 0.3-0.6	-	2	-	1	-	-	-
021	BH14 0.2-0.5	-	-	-	1	-	-	-
023	BH15 0.2-0.5	-	-	-	1	-	-	-
024	BH15 0.9-1.2	-	-	-	1	-	-	-

CONTINUED OVERLEAF

The above table represents SGS Environmental Services' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package.

Please indicate as soon as possible should your request differ from these details. Testing as per this table shall commence immediately unless the client intervenes with a correction.

24/03/2014

CLIENT DETAILS

Client Geotechnique

Project 13138-1 - Canterbury

- SUMMARY	OF ANALYSIS				1		1		
No.	Sample ID	Exchangeable Cations and Cation Exchange Capacity	Fibre Identification in soil	Mercury in Soil	Moisture Content	pH in soil (1:5)	TOC in Soil	Total Cyanide in soil by Discrete Analyser	Total Recoverable Metals in Soil by ICPOES from
025	BH15 1.25-1.35	-	-	1	1	-	-	-	7
028	BH16 2.1-2.4	13	2	-	1	1	1	-	-
030	BH16 3.45-3.55	-	-	1	1	-	-	-	7
032	BH17 0.2-0.5	13	2	-	1	1	1	-	-
036	BH21 0.2-0.5	13	2	-	1	1	1	-	-
038	BH21 1.3-1.6	13	2	-	1	1	1	-	-
039	BH21 1.75-1.85	-	-	1	1	-	-	-	7
042	X3	-	-	-	1	-	-	-	-
045	C1	-	-	1	1	-	-	1	7
046	C2	-	-	1	1	-	-	1	7
047	C3	-	-	1	1	-	-	1	7
048	C4	-	-	1	1	-	-	-	7

_ CONTINUED OVERLEAF

The above table represents SGS Environmental Services' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details.

SE126027

CLIENT DETAILS

Client Geotechnique

- SUMMARY OF ANALYSIS

Project 13138-1 - Canterbury

Na	Consta ID	Mercury in Soil	Moisture Content	Fotal Cyanide in soil by Discrete Analyser	Total Recoverable Metals n Soil by ICPOES from
049	C5	1	1	-	7
050	C6	1	1	-	7
051	C7	1	1	-	7
052	C8	1	1	1	7
053	C9	1	1	1	7
054	C10	1	1	1	7
055	C11	1	1	1	7
056	Duplicate D101	1	1	1	7

CONTINUED OVERLEAF

The above table represents SGS Environmental Services' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details.

SE126027

CLIENT DETAILS . 13138-1 - Canterbury Client Geotechnique Project SUMMARY OF ANALYSIS PAH (Polynuclear Aromatic Hydrocarbons) in TRH (Total Recoverable Hydrocarbons) in Water Total Phenolics in Water OC Pesticides in Water **OP Pesticides in Water** Volatile Petroleum Hydrocarbons in Water VOCs in Water PCBs in Water No. Sample ID 28 22 9 043 13 11 1 12 8 Rinsate R1

CONTINUED OVERLEAF

The above table represents SGS Environmental Services' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details.

CLIENT DETAILS

Client Geotechnique

- SUMMARY OF ANALYSIS

Proiect	13138-1 - Canterbury
Project	13138-1 - Canterbur

No.	Sample ID	Mercury (dissolved) in Water	Metals in Water (Dissolved) by ICPOES	Total Cyanide in water by Discrete Analyser
043	Rinsate R1	1	7	1

The above table represents SGS Environmental Services' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details.

ANALYTICAL REPORT

CLIENT DETAILS		LABORATORY DE	LABORATORY DETAILS				
Contact Client Address	John Xu Geotechnique P.O. Box 880 PENRITH NSW 2751	Manager Laboratory Address	Huong Crawford SGS Alexandria Environmental Unit 16, 33 Maddox St Alexandria NSW 2015				
Telephone Facsimile Email	02 4722 2700 02 4722 6161 john.xu@geotech.com.au	Telephone Facsimile Email	+61 2 8594 0400 +61 2 8594 0499 au.environmental.sydney@sgs.com				
Project Order Number Samples Date Received	13138-1- Canterbury- Additional Analyses (Not specified) 57 19/3/2014	SGS Reference Report Number Date Reported	SE126027A R0 0000079493 4/4/2014				

COMMENTS

Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562(4354).

SIGNATORIES -

Ady Sitte

Andy Sutton Senior Organic Chemist

Kinth

Ly Kim Ha Organic Section Head

Dong Liang Metals/Inorganics Team Leader

Kamrul Ahsan Senior Chemist

SGS Australia Pty Ltd ABN 44 000 964 278

Environmental Services

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015

Australia Australia t +61 2 8594 0400 f

4 0400 **f** +61 2 8594 0499

www.au.sgs.com

ANALYTICAL RESULTS

SE126027A R0

VOC's in Soil [AN433/AN434]

			BH21 1.75-1.85
			SOIL
			18/3/2014
PARAMETER	UOM	LOR	SE126027A.039
Benzene	mg/kg	0.10	<0.1
Toluene	mg/kg	0.10	<0.1
Ethylbenzene	mg/kg	0.10	<0.1
m/p-xylene	mg/kg	0.20	<0.2
o-xylene	mg/kg	0.10	<0.1
Total Xylenes*	mg/kg	0.30	<0.3
Total BTEX*	mg/kg	0.60	<0.6
Naphthalene	mg/kg	0.10	<0.1

Volatile Petroleum Hydrocarbons in Soil [AN433/AN434/AN410]

			BH21 1.75-1.85
			SOIL 18/3/2014
PARAMETER	UOM	LOR	SE126027A.039
TRH C6-C9	mg/kg	20	<20
Benzene (F0)	mg/kg	0.10	<0.1
TRH C6-C10	mg/kg	25.0	<25
TRH C6-C10 minus BTEX (F1)	mg/kg	25.0	<25

SE126027A R0

TRH (Total Recoverable Hydrocarbons) in Soil [AN403]

DADAMETER	11014		BH21 1.75-1.85 SOIL 18/3/2014 SE126027A 020
	UOM	LUK	3E126027A.039
TRH C10-C14	mg/kg	20	<20
TRH C15-C28	mg/kg	45.0	140
TRH C29-C36	mg/kg	45.0	170
TRH C37-C40	mg/kg	100	<100
TRH >C10-C16 (F2)	mg/kg	25.0	<25
TRH >C16-C34 (F3)	mg/kg	90	250
TRH >C34-C40 (F4)	mg/kg	120	<120
TRH C10-C36 Total	mg/kg	110	300
TRH C10-C40 Total	mg/kg	210	300

ANALYTICAL RESULTS

SE126027A R0

PAH (Polynuclear Aromatic Hydrocarbons) in Soil [AN420]

			BH21 1.75-1.85
			2011
			18/3/2014
PARAMETER	иом	LOR	SE126027A.039
Naphthalene	mg/kg	0.10	0.2
2-methylnaphthalene	mg/kg	0.10	<0.1
1-methylnaphthalene	mg/kg	0.10	<0.1
Acenaphthylene	mg/kg	0.10	0.4
Acenaphthene	mg/kg	0.10	0.1
Fluorene	mg/kg	0.10	0.3
Phenanthrene	mg/kg	0.10	2.8
Anthracene	mg/kg	0.10	0.6
Fluoranthene	mg/kg	0.10	4.8
Pyrene	mg/kg	0.10	4.4
Benzo(a)anthracene	mg/kg	0.10	3.1
Chrysene	mg/kg	0.10	1.9
Benzo(b&j)fluoranthene	mg/kg	0.10	3.0
Benzo(k)fluoranthene	mg/kg	0.10	1.2
Benzo(a)pyrene	mg/kg	0.10	2.5
Indeno(1,2,3-cd)pyrene	mg/kg	0.10	2.2
Dibenzo(a&h)anthracene	mg/kg	0.10	0.2
Benzo(ghi)perylene	mg/kg	0.10	1.5
Total PAH	mg/kg	0.80	29
Carcinogenic PAHs (as BaP TEQ)	TEQ	0.20	3.6

Total Recoverable Metals in Soil by ICPOES from EPA 200.8 Digest [AN040/AN320]

			BH2 0.1-0.4	BH4 0-0.3	BH5 0-0.15	BH10 0-0.15	BH11 0-0.15	BH12 0-0.15
PARAMETER	UOM	LOR	SOIL 18/3/2014 SE126027A.002	SOIL 18/3/2014 SE126027A.005	SOIL 18/3/2014 SE126027A.006	SOIL 18/3/2014 SE126027A.013	SOIL 18/3/2014 SE126027A.015	SOIL 18/3/2014 SE126027A.017
Arsenic, As	mg/kg	1.0	-	-	-	-	-	-
Cadmium, Cd	mg/kg	0.30	-	-	-	0.7	-	-
Chromium, Cr	mg/kg	0.50	-	-	-	-	-	-
Copper, Cu	mg/kg	0.50	-	-	-	-	4.0	9.6
Lead, Pb	mg/kg	1.0	-	-	-	-	-	-
Nickel, Ni	mg/kg	0.50	1.8	43	3.8	-	-	-
Zinc, Zn	mg/kg	2.0	11	32	320	-	-	-

			BH13 0-0.15	BH14 0-0.15	BH15 0-0.15	BH16 0-0.1	BH16 0.1-0.4	BH17 0-0.15
PARAMETER	UOM	LOR	SOIL 18/3/2014 SE126027A.018	SOIL 18/3/2014 SE126027A.020	SOIL 18/3/2014 SE126027A.022	SOIL 18/3/2014 SE126027A.026	SOIL 18/3/2014 SE126027A.027	SOIL 18/3/2014 SE126027A.031
Arsenic, As	mg/kg	1.0	-	-	-	-	-	-
Cadmium, Cd	mg/kg	0.30	-	1.8	2.2	0.5	-	0.4
Chromium, Cr	mg/kg	0.50	-	-	-	-	-	-
Copper, Cu	mg/kg	0.50	11	-	-	-	14	-
Lead, Pb	mg/kg	1.0	-	-	-	-	-	-
Nickel, Ni	mg/kg	0.50	-	-	-	4.4	-	1.5
Zinc, Zn	mg/kg	2.0	-	-	-	-	-	-

			BH17 0.2-0.5	BH18 0-0.15	BH19 0-0.15	BH20 0-0.15	BH21 0.2-0.5	BH21 1.3-1.6
PARAMETER	UOM	LOR	SOIL 18/3/2014 SE126027A.032	SOIL 18/3/2014 SE126027A.033	SOIL 18/3/2014 SE126027A.034	SOIL 18/3/2014 SE126027A.035	SOIL 18/3/2014 SE126027A.036	SOIL 18/3/2014 SE126027A.038
Arsenic, As	mg/kg	1.0	-	-	-	-	-	5
Cadmium, Cd	mg/kg	0.30	-	1.7	-	-	-	<0.3
Chromium, Cr	mg/kg	0.50	-	-	-	-	-	6.0
Copper, Cu	mg/kg	0.50	20	-	67	17	2.2	30
Lead, Pb	mg/kg	1.0	-	-	-	-	-	23
Nickel, Ni	mg/kg	0.50	-	3.5	3.7	3.8	-	4.0
Zinc, Zn	mg/kg	2.0	-	-	60	44	-	41

			BH21 0-0.15
			18/3/2014
PARAMETER	UOM	LOR	SE126027A.057
Arsenic, As	mg/kg	1.0	-
Cadmium, Cd	mg/kg	0.30	-
Chromium, Cr	mg/kg	0.50	-
Copper, Cu	mg/kg	0.50	8.3
Lead, Pb	mg/kg	1.0	-
Nickel, Ni	mg/kg	0.50	3.1
Zinc, Zn	mg/kg	2.0	18

ANALYTICAL RESULTS

SE126027A R0

Mercury in Soil [AN312]

			BH10.0-0.15	BH10 0 15-0 45	BH1102-05	BH13 0 3-0 6	BH14 0-0 15	BH14 0 2-0 5
			Bille e elle	Binto 0.10 0.40	BIIII 0.2 0.0	Birrio 0.0 0.0	51114 0 0.10	BIII + 0.2 0.0
			9011	5011	SOII	901	9011	SOII
						- 50il		JOIL
			18/3/2014	18/3/2014	18/3/2014	18/3/2014	18/3/2014	18/3/2014
			054000074 040	05400074 044	05400074 040	054000074 040	05400074 000	05400074 004
PARAMETER	UOM	LOR	SE12602/A.013	SE126027A.014	SE12602/A.016	SE12602/A.019	SE12602/A.020	SE126027A.021
Marauni		0.050			o /=			
wercury	mg/kg	0.050	0.63	0.34	0.47	0.11	0.23	0.23

			BH15 0-0.15	BH15 0.2-0.5	BH15 0.9-1.2	BH16 0-0.1	BH17 0-0.15	BH18 0-0.15
			SOIL 18/3/2014	SOIL 18/3/2014	SOIL 18/3/2014	SOIL 18/3/2014	SOIL 18/3/2014	SOIL 18/3/2014
PARAMETER	UOM	LOR	SE126027A.022	SE126027A.023	SE126027A.024	SE126027A.026	SE126027A.031	SE126027A.033
Mercury	mg/kg	0.050	0.65	0.45	0.36	0.65	0.85	0.68

			BH19 0-0.15	BH20 0-0.15	BH21 1.3-1.6	BH21 0-0.15
			SOIL 18/3/2014	SOIL 18/3/2014	SOIL 18/3/2014	SOIL 18/3/2014
PARAMETER	UOM	LOR	SE126027A.034	SE126027A.035	SE126027A.038	SE126027A.057
Mercury	mg/kg	0.050	0.13	0.69	<0.05	0.29

ANALYTICAL RESULTS

SE126027A R0

Moisture Content [AN002]

			BH2 0.1-0.4	BH5 0-0.15	BH11 0-0.15	BH13 0-0.15	BH14 0-0.15	BH15 0-0.15
			SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
			10/2/2014	19/2/2014	10/2/2014	19/2/2014	19/2/2014	19/2/2014
			10/3/2014	10/3/2014	10/3/2014	10/3/2014	10/3/2014	10/3/2014
PARAMETER	UOM	LOR	SE126027A.002	SE126027A.006	SE126027A.015	SE126027A.018	SE126027A.020	SE126027A.022
% Moisture	%	0.50	20.0	14.8	9.2	11.7	9.4	10.3

			BH16 0-0.1	BH16 0.1-0.4	BH17 0-0.15	BH18 0-0.15	BH19 0-0.15	BH20 0-0.15
			SOIL 18/3/2014	SOIL 18/3/2014	SOIL 18/3/2014	SOIL 18/3/2014	SOIL 18/3/2014	SOIL 18/3/2014
PARAMETER	UOM	LOR	SE126027A.026	SE126027A.027	SE126027A.031	SE126027A.033	SE126027A.034	SE126027A.035
% Moisture	%	0.50	10.9	21.9	7.2	10.7	11.7	10.5

			BH21 0-0.15
PARAMETER	UOM	LOR	SOIL 18/3/2014 SE126027A.057
% Moisture	%	0.50	5.9

METHOD	
AN002	The test is carried out by drying (at either 40°C or 105°C) a known mass of sample in a weighed evaporating basin. After fully dry the sample is re-weighed. Samples such as sludge and sediment having high percentages of moisture will take some time in a drying oven for complete removal of water.
AN040	A portion of sample is digested with Nitric acid to decompose organic matter and Hydrochloric acid to complete the digestion of metals and then filtered for analsysis by ASS or ICP as per USEPA Method 200.8.
AN040/AN320	A portion of sample is digested with nitric acid to decompose organic matter and hydrochloric acid to complete the digestion of metals. The digest is then analysed by ICP OES with metals results reported on the dried sample basis. Based on USEPA method 200.8 and 6010C.
AN088	Orbital rolling for Organic pollutants are extracted from soil/sediment by transferring an appropriate mass of sample to a clear soil jar and extracting with 1:1 Dichloromethane/Acetone. Orbital Rolling method is intended for the extraction of semi-volatile organic compounds from soil/sediment samples, and is based somewhat on USEPA method 3570 (Micro Organic extraction and sample preparation). Method 3700.
AN312	Mercury by Cold Vapour AAS in Soils: After digestion with nitric acid, hydrogen peroxide and hydrochloric acid, mercury ions are reduced by stannous chloride reagent in acidic solution to elemental mercury. This mercury vapour is purged by nitrogen into a cold cell in an atomic absorption spectrometer or mercury analyser. Quantification is made by comparing absorbances to those of the calibration standards. Reference APHA 3112/3500
AN403	Total Recoverable Hydrocarbons: Determination of Hydrocarbons by gas chromatography after a solvent extraction. Detection is by flame ionisation detector (FID) that produces an electronic signal in proportion to the combustible matter passing through it. Total Recoverable Hydrocarbons (TRH) are routinely reported as four alkane groupings based on the carbon chain length of the compounds: C6-C9, C10-C14, C15-C28 and C29-C36 and in recognition of the Draft NEPM 2011, >C10-C16 (F2), >C16-C34 (F3) and >C34-C40 (F4). F2 is not corrected for Naphthalene.
AN420	(SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols (etc) in soils, sediments and waters are determined by GCMS/ECD technique following appropriate solvent extraction process (Based on USEPA 3500C and 8270D).
AN433/AN434	VOCs and C6-C9 Hydrocarbons by GC-MS P&T: VOC's are volatile organic compounds. The sample is presented to a gas chromatograph via a purge and trap (P&T) concentrator and autosampler and is detected with a Mass Spectrometer (MSD). Solid samples are initially extracted with methanol whilst liquid samples are processed directly. References: USEPA 5030B, 8020A, 8260.
AN433/AN434/AN410	VOCs and C6-C9/C6-C10 Hydrocarbons by GC-MS P&T: VOC's are volatile organic compounds. The sample is presented to a gas chromatograph via a purge and trap (P&T) concentrator and autosampler and is detected with a Mass Spectrometer (MSD). Solid samples are initially extracted with methanol whilst liquid samples are processed directly. References: USEPA 5030B, 8020A, 8260.

- FOOTN	OTES				
*	Analysis not covered by the	-	Not analysed.	UOM	Unit of Measure.
	scope of accreditation.	NVL	Not validated.	LOR	Limit of Reporting.
**	Indicative data, theoretical	IS	Insufficient sample for analysis.	↑↓	Raised/lowered Limit of
	holding time exceeded.	LNR	Sample listed, but not received.		Reporting.
^	Performed by outside		•		
	laboratory.				

Samples analysed as received. Solid samples expressed on a dry weight basis.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: http://www.sgs.com.au.pv.sgsv3/~/media/Local/Australia/Documents/Technical%20Documents/MP-AU-ENV-QU-022%20QA%20QC%20Plan.pdf

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/en/Terms-and-Conditions/General-Conditions-of-Services-English.aspx. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This report must not be reproduced, except in full.

STATEMENT OF QA/QC PERFORMANCE

CLIENT DETAILS		LABORATORY DETAIL	_\$
Contact	John Xu	Manager	Huong Crawford
Client	Geotechnique	Laboratory	SGS Alexandria Environmental
Address	P.O. Box 880 PENRITH NSW 2751	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	02 4722 2700	Telephone	+61 2 8594 0400
Facsimile	02 4722 6161	Facsimile	+61 2 8594 0499
Email	john.xu@geotech.com.au	Email	au.environmental.sydney@sgs.com
Project	13138-1- Canterbury- Additional Analyses	SGS Reference	SE126027A R0
Order Number	(Not specified)	Report Number	0000079530
Samples	57	Date Reported	04 Apr 2014

COMMENTS

All the laboratory data for each environmental matrix was compared to SGS Environmental Services' stated Data Quality Objectives (DQO). Comments arising from the comparison were made and are reported below.

The data relating to sampling was taken from the Chain of Custody document and was supplied by the Client. This QA/QC Statement must be read in conjunction with the referenced Analytical Report. The Statement and the Analytical Report must not be reproduced except in full.

All Data Quality Objectives were met (within the SGS Alexandria Environmental laboratory).

SAMPLE SUMMARY Sample counts by matrix 26 Soils Type of documentation received coc 28/03/2014@05:26r Samples received in good order Date documentation received Yes 3.9°C Samples received without headspace Yes Sample temperature upon receipt SGS Standard Sample container provider Turnaround time requested Samples received in correct containers Yes Sufficient sample for analysis Yes Sample cooling method Ice Bricks Samples clearly labelled Yes Complete documentation received Yes

SGS Australia Pty Ltd ABN 44 000 964 278 Environmental Services

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 A

5 Australia 5 Australia t +61 2 8594 0400 f +61 2

f +61 2 8594 0499 www.au.sgs.com

HOLDING TIME SUMMARY

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Mercury in Soil							Method: N	AE-(AU)-[ENV]AN312			
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed			
BH10 0-0.15	SE126027A.013	LB055094	18 Mar 2014	19 Mar 2014	15 Apr 2014	01 Apr 2014	15 Apr 2014	01 Apr 2014			
BH10 0.15-0.45	SE126027A.014	LB055094	18 Mar 2014	19 Mar 2014	15 Apr 2014	01 Apr 2014	15 Apr 2014	01 Apr 2014			
BH11 0.2-0.5	SE126027A.016	LB055094	18 Mar 2014	19 Mar 2014	15 Apr 2014	01 Apr 2014	15 Apr 2014	01 Apr 2014			
BH13 0.3-0.6	SE126027A.019	LB055094	18 Mar 2014	19 Mar 2014	15 Apr 2014	01 Apr 2014	15 Apr 2014	01 Apr 2014			
BH14 0-0.15	SE126027A.020	LB055094	18 Mar 2014	19 Mar 2014	15 Apr 2014	01 Apr 2014	15 Apr 2014	01 Apr 2014			
BH14 0.2-0.5	SE126027A.021	LB055094	18 Mar 2014	19 Mar 2014	15 Apr 2014	01 Apr 2014	15 Apr 2014	01 Apr 2014			
BH15 0-0.15	SE126027A.022	LB055094	18 Mar 2014	19 Mar 2014	15 Apr 2014	01 Apr 2014	15 Apr 2014	01 Apr 2014			
BH15 0.2-0.5	SE126027A.023	LB055094	18 Mar 2014	19 Mar 2014	15 Apr 2014	01 Apr 2014	15 Apr 2014	01 Apr 2014			
BH15 0.9-1.2	SE126027A.024	LB055094	18 Mar 2014	19 Mar 2014	15 Apr 2014	01 Apr 2014	15 Apr 2014	01 Apr 2014			
BH16 0-0.1	SE126027A.026	LB055094	18 Mar 2014	19 Mar 2014	15 Apr 2014	01 Apr 2014	15 Apr 2014	01 Apr 2014			
BH17 0-0.15	SE126027A.031	LB055094	18 Mar 2014	19 Mar 2014	15 Apr 2014	01 Apr 2014	15 Apr 2014	01 Apr 2014			
BH18 0-0.15	SE126027A.033	LB055094	18 Mar 2014	19 Mar 2014	15 Apr 2014	01 Apr 2014	15 Apr 2014	01 Apr 2014			
BH19 0-0.15	SE126027A.034	LB055094	18 Mar 2014	19 Mar 2014	15 Apr 2014	01 Apr 2014	15 Apr 2014	01 Apr 2014			
BH20 0-0.15	SE126027A.035	LB055094	18 Mar 2014	19 Mar 2014	15 Apr 2014	01 Apr 2014	15 Apr 2014	01 Apr 2014			
BH21 1.3-1.6	SE126027A.038	LB055094	18 Mar 2014	19 Mar 2014	15 Apr 2014	01 Apr 2014	15 Apr 2014	01 Apr 2014			
BH21 0-0.15	SE126027A.057	LB055094	18 Mar 2014	19 Mar 2014	15 Apr 2014	01 Apr 2014	15 Apr 2014	01 Apr 2014			
Moisture Content							Method: N	ME-(AU)-[ENV]AN002			
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed			
BH2 0.1-0.4	SE126027A.002	LB055060	18 Mar 2014	19 Mar 2014	01 Apr 2014	31 Mar 2014	05 Apr 2014	31 Mar 2014			
BH5 0-0.15	SE126027A.006	LB055060	18 Mar 2014	19 Mar 2014	01 Apr 2014	31 Mar 2014	05 Apr 2014	31 Mar 2014			
BH11 0-0.15	SE126027A.015	LB055060	18 Mar 2014	19 Mar 2014	01 Apr 2014	31 Mar 2014	05 Apr 2014	31 Mar 2014			
BH13 0-0.15	SE126027A.018	LB055060	18 Mar 2014	19 Mar 2014	01 Apr 2014	31 Mar 2014	05 Apr 2014	31 Mar 2014			
BH14 0-0.15	SE126027A.020	LB055060	18 Mar 2014	19 Mar 2014	01 Apr 2014	31 Mar 2014	05 Apr 2014	31 Mar 2014			
BH15 0-0.15	SE126027A.022	LB055060	18 Mar 2014	19 Mar 2014	01 Apr 2014	31 Mar 2014	05 Apr 2014	31 Mar 2014			
BH16 0-0.1	SE126027A.026	LB055060	18 Mar 2014	19 Mar 2014	01 Apr 2014	31 Mar 2014	05 Apr 2014	31 Mar 2014			
BH16 0.1-0.4	SE126027A.027	LB055060	18 Mar 2014	19 Mar 2014	01 Apr 2014	31 Mar 2014	05 Apr 2014	31 Mar 2014			
BH17 0-0.15	SE126027A.031	LB055060	18 Mar 2014	19 Mar 2014	01 Apr 2014	31 Mar 2014	05 Apr 2014	31 Mar 2014			
BH18 0-0.15	SE126027A.033	LB055060	18 Mar 2014	19 Mar 2014	01 Apr 2014	31 Mar 2014	05 Apr 2014	31 Mar 2014			
BH19 0-0.15	SE126027A.034	LB055060	18 Mar 2014	19 Mar 2014	01 Apr 2014	31 Mar 2014	05 Apr 2014	31 Mar 2014			
BH20 0-0.15	SE126027A.035	LB055060	18 Mar 2014	19 Mar 2014	01 Apr 2014	31 Mar 2014	05 Apr 2014	31 Mar 2014			
BH21 0-0.15	SE126027A.057	LB055060	18 Mar 2014	19 Mar 2014	01 Apr 2014	31 Mar 2014	05 Apr 2014	31 Mar 2014			
PAH (Polynuclear Aromatic Hy	Al (Polynuclear Aromatic Hydrocarbons) in Soil Method: ME-(AU)-[ENV]AN42014 Method: ME-(AU)-[ENV]AN42014										

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH21 1.75-1.85	SE126027A.039	LB055057	18 Mar 2014	19 Mar 2014	01 Apr 2014	31 Mar 2014	10 May 2014	02 Apr 2014

Total Recoverable Metals in Soil by ICPOES from EPA 200.8 Digest Sample

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH2 0.1-0.4	SE126027A.002	LB055089	18 Mar 2014	19 Mar 2014	14 Sep 2014	01 Apr 2014	14 Sep 2014	02 Apr 2014
BH4 0-0.3	SE126027A.005	LB055089	18 Mar 2014	19 Mar 2014	14 Sep 2014	01 Apr 2014	14 Sep 2014	02 Apr 2014
BH5 0-0.15	SE126027A.006	LB055089	18 Mar 2014	19 Mar 2014	14 Sep 2014	01 Apr 2014	14 Sep 2014	02 Apr 2014
BH10 0-0.15	SE126027A.013	LB055089	18 Mar 2014	19 Mar 2014	14 Sep 2014	01 Apr 2014	14 Sep 2014	02 Apr 2014
BH11 0-0.15	SE126027A.015	LB055089	18 Mar 2014	19 Mar 2014	14 Sep 2014	01 Apr 2014	14 Sep 2014	02 Apr 2014
BH12 0-0.15	SE126027A.017	LB055089	18 Mar 2014	19 Mar 2014	14 Sep 2014	01 Apr 2014	14 Sep 2014	02 Apr 2014
BH13 0-0.15	SE126027A.018	LB055089	18 Mar 2014	19 Mar 2014	14 Sep 2014	01 Apr 2014	14 Sep 2014	02 Apr 2014
BH14 0-0.15	SE126027A.020	LB055089	18 Mar 2014	19 Mar 2014	14 Sep 2014	01 Apr 2014	14 Sep 2014	02 Apr 2014
BH15 0-0.15	SE126027A.022	LB055089	18 Mar 2014	19 Mar 2014	14 Sep 2014	01 Apr 2014	14 Sep 2014	02 Apr 2014
BH16 0-0.1	SE126027A.026	LB055089	18 Mar 2014	19 Mar 2014	14 Sep 2014	01 Apr 2014	14 Sep 2014	02 Apr 2014
BH16 0.1-0.4	SE126027A.027	LB055089	18 Mar 2014	19 Mar 2014	14 Sep 2014	01 Apr 2014	14 Sep 2014	02 Apr 2014
BH17 0-0.15	SE126027A.031	LB055089	18 Mar 2014	19 Mar 2014	14 Sep 2014	01 Apr 2014	14 Sep 2014	02 Apr 2014
BH17 0.2-0.5	SE126027A.032	LB055089	18 Mar 2014	19 Mar 2014	14 Sep 2014	01 Apr 2014	14 Sep 2014	02 Apr 2014
BH18 0-0.15	SE126027A.033	LB055089	18 Mar 2014	19 Mar 2014	14 Sep 2014	01 Apr 2014	14 Sep 2014	02 Apr 2014
BH19 0-0.15	SE126027A.034	LB055089	18 Mar 2014	19 Mar 2014	14 Sep 2014	01 Apr 2014	14 Sep 2014	02 Apr 2014
BH20 0-0.15	SE126027A.035	LB055089	18 Mar 2014	19 Mar 2014	14 Sep 2014	01 Apr 2014	14 Sep 2014	02 Apr 2014
BH21 0.2-0.5	SE126027A.036	LB055089	18 Mar 2014	19 Mar 2014	14 Sep 2014	01 Apr 2014	14 Sep 2014	02 Apr 2014
BH21 1.3-1.6	SE126027A.038	LB055089	18 Mar 2014	19 Mar 2014	14 Sep 2014	01 Apr 2014	14 Sep 2014	02 Apr 2014
BH21 0-0.15	SE126027A.057	LB055089	18 Mar 2014	19 Mar 2014	14 Sep 2014	01 Apr 2014	14 Sep 2014	02 Apr 2014

TRH (Total Recoverable Hydrocarbons) in Soil

```
Sample Name Sample No. QC Ref
```

Method: ME-(AU)-[ENV]AN040/AN320

HOLDING TIME SUMMARY

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH21 1.75-1.85	SE126027A.039	LB055057	18 Mar 2014	19 Mar 2014	01 Apr 2014	31 Mar 2014	10 May 2014	03 Apr 2014
VOC's in Soil							Method: ME-(AU)-[ENV]AN433/AN434
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH21 1.75-1.85	SE126027A.039	LB055062	18 Mar 2014	19 Mar 2014	01 Apr 2014	31 Mar 2014	10 May 2014	03 Apr 2014

							· · · ·		
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed	
BH21 1.75-1.85	SE126027A.039	LB055062	18 Mar 2014	19 Mar 2014	01 Apr 2014	31 Mar 2014	10 May 2014	03 Apr 2014	

SURROGATES

Method: ME-(AU)-[ENV]AN420

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

PAH (Polynuclear Aromatic Hydrocarbons) in Soil

Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
2-fluorobiphenyl (Surrogate)	BH21 1.75-1.85	SE126027A.039	%	60 - 130%	102
d14-p-terphenyl (Surrogate)	BH21 1.75-1.85	SE126027A.039	%	60 - 130%	116
d5-nitrobenzene (Surrogate)	BH21 1.75-1.85	SE126027A.039	%	60 - 130%	110
VOC's in Soil				Method: ME-(AU)-	[ENV]AN433/AN434
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Bromofluorobenzene (Surrogate)	BH21 1.75-1.85	SE126027A.039	%	60 - 130%	92
d4-1,2-dichloroethane (Surrogate)	BH21 1.75-1.85	SE126027A.039	%	60 - 130%	102
d8-toluene (Surrogate)	BH21 1.75-1.85	SE126027A.039	%	60 - 130%	88
Dibromofluoromethane (Surrogate)	BH21 1.75-1.85	SE126027A.039	%	60 - 130%	86
Volatile Petroleum Hydrocarbons in Soll			Metho	d: ME-(AU)-[ENV]A	N433/AN434/AN410
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Bromofluorobenzene (Surrogate)	BH21 1.75-1.85	SE126027A.039	%	60 - 130%	92
d4-1,2-dichloroethane (Surrogate)	BH21 1.75-1.85	SE126027A.039	%	60 - 130%	102
d8-toluene (Surrogate)	BH21 1.75-1.85	SE126027A.039	%	60 - 130%	88
Dibromofluoromethane (Surrogate)	BH21 1.75-1.85	SE126027A.039	%	60 - 130%	86

METHOD BLANKS

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Lead, Pb

Nickel, Ni

Zinc, Zn

Mercury in Soil			Meth	od: ME-(AU)-[ENV]AN312
Sample Number	Parameter	Units	LOR	Result
LB055094.001	Mercury	mg/kg	0.05	<0.05
		5 5		

PAH (Polynuclear Aromatic Hydrocarbons) in Soil

PAH (Polynuclear Aromatic Hydrocarbons) in Soil			Metho	d: ME-(AU)-[ENV]AN420)
Sample Number	Parameter	Units	LOR	Result	ł
LB055057.001	Naphthalene	mg/kg	0.1	<0.1	Î
	2-methylnaphthalene	mg/kg	0.1	<0.1	
	1-methylnaphthalene	mg/kg	0.1	<0.1	
	Acenaphthylene	mg/kg	0.1	<0.1	
	Acenaphthene	mg/kg	0.1	<0.1	
	Fluorene	mg/kg	0.1	<0.1	
	Phenanthrene	mg/kg	0.1	<0.1	
	Anthracene	mg/kg	0.1	<0.1	
	Fluoranthene	mg/kg	0.1	<0.1	
	Pyrene	mg/kg	0.1	<0.1	
	Benzo(a)anthracene	mg/kg	0.1	<0.1	
	Chrysene	mg/kg	0.1	<0.1	
	Benzo(a)pyrene	mg/kg	0.1	<0.1	
	Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	
	Dibenzo(a&h)anthracene	mg/kg	0.1	<0.1	
	Benzo(ghi)perylene	mg/kg	0.1	<0.1	
	Total PAH	mg/kg	0.8	<0.8	
Surrogates	d5-nitrobenzene (Surrogate)	%	-	114	
	2-fluorobiphenyl (Surrogate)	%	-	104	
	d14-p-terphenyl (Surrogate)	%	-	112	
Total Recoverable Metals in Soil by ICPOES from EPA 2	00.8 Digest		Method: ME-(AU)-[ENV]AN040/AN320)
Sample Number	Parameter	Units	LOR	Result	
LB055089.001	Arsenic, As	mg/kg	1	<1	
	Cadmium, Cd	mg/kg	0.3	<0.3	
	Chromium, Cr	mg/kg	0.5	<0.5	
	Copper, Cu	mg/kg	0.5	<0.5	

TRH (Total Recoverable Hydrocarbons) in Soil

TRH (Total Recoverable Hydrocarbons) in Soil			Meth	Method: ME-(AU)-[ENV]AN403		
Sample Number	Parameter	Units	LOR	Result		
LB055057.001	TRH C10-C14	mg/kg	20	<20		
	TRH C15-C28	mg/kg	45	<45		
	TRH C29-C36	mg/kg	45	<45		
	TRH C37-C40	mg/kg	100	<100		
	TRH C10-C36 Total	mg/kg	110	<110		
VOCIa in Sall			Mothod: ME			

VOC 8 III 30II				Method. ME-(AO)-[ENV]AN455/AN454		
Sample Number		Parameter	Units	LOR	Result	
LB055062.001	Monocyclic Aromatic	Benzene	mg/kg	0.1	<0.1	
	Hydrocarbons	Toluene	mg/kg	0.1	<0.1	
		Ethylbenzene	mg/kg	0.1	<0.1	
		m/p-xylene	mg/kg	0.2	<0.2	
		o-xylene	mg/kg	0.1	<0.1	
Polycyclic VOCs	Naphthalene	mg/kg	0.1	<0.1		
	Surrogates	Dibromofluoromethane (Surrogate)	%	-	95	
		d4-1,2-dichloroethane (Surrogate)	%	-	112	
		d8-toluene (Surrogate)	%	-	111	
		Bromofluorobenzene (Surrogate)	%	-	108	
	Totals	Total BTEX*	mg/kg	0.6	<0.6	
Volatile Petroleum Hyd	drocarbons in Soil		N	/lethod: ME-(AU)-[E	NVJAN433/AN434/AN410	
Sample Number		Parameter	Units	LOR		

1

0.5

2

mg/kg

mg/kg

mg/kg

<1

<0.5

<2

METHOD BLANKS

SE126027A R0

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Volatile Petroleum Hydrocarbons in Soil (continued)

Method: ME-(AU)-[ENV]AN433/AN434/AN410

Sample Number		Parameter	Units	LOR	Result
LB055062.001		TRH C6-C9	mg/kg	20	<20
	Surrogates	Dibromofluoromethane (Surrogate)	%	-	95
		d4-1,2-dichloroethane (Surrogate)	%	-	112
		d8-toluene (Surrogate)	%	-	111

Method: ME-(AU)-IENVIAN420

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Mercury in Soil						Meth	od: ME-(AU)-	ENVJAN312
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE126027A.026	LB055094.014	Mercury	mg/kg	0.05	0.65	0.66	32	2
SE126027A.057	LB055094.021	Mercury	mg/kg	0.05	0.29	0.30	33	2

PAH (Polynuclear Aromatic Hydrocarbons) in Soil

Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE126260.001	LB055057.014		Naphthalene	mg/kg	0.1	<0.1	<0.1	200	0
			2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	200	0
			1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	200	0
			Acenaphthylene	mg/kg	0.1	<0.1	<0.1	200	0
			Acenaphthene	mg/kg	0.1	<0.1	<0.1	200	0
			Fluorene	mg/kg	0.1	<0.1	<0.1	200	0
			Phenanthrene	mg/kg	0.1	<0.1	<0.1	200	0
			Anthracene	mg/kg	0.1	<0.1	<0.1	200	0
			Fluoranthene	mg/kg	0.1	<0.1	<0.1	200	0
			Pyrene	mg/kg	0.1	<0.1	<0.1	200	0
			Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	200	0
			Chrysene	mg/kg	0.1	<0.1	<0.1	200	0
			Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	<0.1	200	0
			Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	200	0
			Benzo(a)pyrene	mg/kg	0.1	<0.1	<0.1	200	0
			Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	200	0
			Dibenzo(a&h)anthracene	mg/kg	0.1	<0.1	<0.1	200	0
			Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	200	0
			Total PAH	mg/kg	0.8	<0.8	<0.8	200	0
			Carcinogenic PAHs (as BaP TEQ)-assume results	TEQ (mg/kg)	0.2	<0.2	<0.2	200	0
		Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.6	0.54	30	14
			2-fluorobiphenyl (Surrogate)	mg/kg	-	0.6	0.54	30	9
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.5	0.41	30	14
Total Recoverable	Metals in Soil by ICP	OES from EPA 20	0.8 Digest				Method: ME	-(AU)-[ENV]AI	N040/AN320
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE126027A.026	LB055089.014		Cadmium, Cd	mg/kg	0.3	0.5	0.5	94	3
			Nickel, Ni	mg/kg	0.5	4.4	4.4	41	2
SE126027A.057	LB055089.024		Copper, Cu	mg/kg	0.5	8.3	6.5	37	24
			Nickel, Ni	mg/kg	0.5	3.1	2.3	48	27
			Zinc, Zn	mg/kg	2	18	14	43	21
TRH (Total Recove	erable Hydrocarbons)	in Soll					Meth	od: ME-(AU)-[ENVJAN403
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE126260.001	LB055057.015		TRH C10-C14	mg/kg	20	<20	<20	200	0
			TRH C15-C28	mg/kg	45	<45	<45	200	0
			TRH C29-C36	mg/kg	45	<45	<45	200	0
			TRH C37-C40	mg/kg	100	<100	<100	200	0
			TRH C10-C36 Total	mg/kg	110	<110	<110	200	0
			TRH C10-C40 Total	mg/kg	210	<210	<210	200	0
		TRH F Bands	TRH >C10-C16 (F2)	mg/kg	25	<25	<25	200	0

VOC's in Soil							Method: ME	-(AU)-[ENV]A	N433/AN434
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE126027A.039	LB055062.004	Monocyclic	Benzene	mg/kg	0.1	<0.1	<0.1	200	0
		Aromatic	Toluene	mg/kg	0.1	<0.1	<0.1	200	0
			Ethylbenzene	mg/kg	0.1	<0.1	<0.1	200	0
			m/p-xylene	mg/kg	0.2	<0.2	<0.2	200	0
			o-xylene	mg/kg	0.1	<0.1	<0.1	200	0
		Polycyclic	Naphthalene	mg/kg	0.1	<0.1	<0.1	200	0
		Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	4.3	5.1	50	17
			d4-1,2-dichloroethane (Surrogate)	mg/kg	-	5.1	5.7	50	12
			d8-toluene (Surrogate)	mg/kg	-	4.4	5.0	50	13
			Bromofluorobenzene (Surrogate)	mg/kg	-	4.6	5.0	50	8

mg/kg

mg/kg

90

120

<90

<120

<90

<120

200

200

TRH >C16-C34 (F3)

TRH >C34-C40 (F4)

0

0

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

VOC's in Soil (cont	inued)						Method: ME	-(AU)-[ENV]A	N433/AN434
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE126027A.039	LB055062.004	Totals	Total Xylenes*	mg/kg	0.3	<0.3	<0.3	200	0
			Total BTEX*	mg/kg	0.6	<0.6	<0.6	200	0
Volatile Petroleum	Hydrocarbons in Soll					Metho	d: ME-(AU)-[E	ENVJAN433/A	N434/AN410
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE126027A.039	LB055062.004		TRH C6-C10	mg/kg	25	<25	<25	200	0
			TRH C6-C9	mg/kg	20	<20	<20	200	0
		Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	4.3	5.1	30	17
			d4-1,2-dichloroethane (Surrogate)	mg/kg	-	5.1	5.7	30	12
			d8-toluene (Surrogate)	mg/kg	-	4.4	5.0	30	13
			Bromofluorobenzene (Surrogate)	mg/kg	-	4.6	5.0	30	8
		VPH F Bands	Benzene (F0)	mg/kg	0.1	<0.1	<0.1	200	0
			TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	200	0

Method: ME-(AU)-[ENV]AN420

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Mercury in Soil					1	Nethod: ME-(A	U)-[ENV]AN312
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB055094.002	Mercury	mg/kg	0.05	0.21	0.2	70 - 130	106
LB055094.002	Mercury	mg/kg	0.05	0.21	0.2	70 - 130	100

PAH (Polynuclear Aromatic Hydrocarbons) in Soil

Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB055057.002		Naphthalene	mg/kg	0.1	4.0	4	60 - 140	99
		Acenaphthylene	mg/kg	0.1	4.0	4	60 - 140	99
		Acenaphthene	mg/kg	0.1	4.1	4	60 - 140	102
		Phenanthrene	mg/kg	0.1	3.9	4	60 - 140	98
		Anthracene	mg/kg	0.1	3.9	4	60 - 140	98
		Fluoranthene	mg/kg	0.1	3.9	4	60 - 140	99
		Pyrene	mg/kg	0.1	3.7	4	60 - 140	92
		Benzo(a)pyrene	mg/kg	0.1	4.3	4	60 - 140	108
	Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.6	0.5	40 - 130	114
		2-fluorobiphenyl (Surrogate)	mg/kg	-	0.5	0.5	40 - 130	100
		d14-p-terphenyl (Surrogate)	mg/kg	-	0.6	0.5	40 - 130	114
Total Recoverable I	Metals in Soil by I	CPOES from EPA 200.8 Digest				Method:	ME-(AU)-[EN	V]AN040/AN320
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB055089.002		Arsenic, As	mg/kg	1	51	50	80 - 120	103
		Cadmium. Cd	ma/ka	0.3	51	50	80 - 120	102
		Chromium, Cr	ma/ka	0.5	51	50	80 - 120	103
		Copper. Cu	ma/ka	0.5	51	50	80 - 120	103
		Lead. Pb	ma/ka	1	51	50	80 - 120	103
		Nickel. Ni	ma/ka	0.5	51	50	80 - 120	103
		Zinc, Zn	mg/kg	2	51	50	80 - 120	103
TRH (Total Recover	rable Hydrocarbor	ns) in Soil				N	Aethod: ME-(A	U)-[ENV]AN403
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB055057.002		TRH C10-C14	mg/kg	20	40	40	60 - 140	100
		TRH C15-C28	mg/kg	45	<45	40	60 - 140	98
		TRH C29-C36	mg/kg	45	<45	40	60 - 140	83
	TRH F Bands	TRH >C10-C16 (F2)	mg/kg	25	40	40	60 - 140	100
		TRH >C16-C34 (F3)	mg/kg	90	<90	40	60 - 140	98
		TRH >C34-C40 (F4)	mg/kg	120	<120	20	60 - 140	75
VOC's in Soil						Method:	ME-(AU)-[EN	V]AN433/AN434
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB055062.002	Monocyclic	Benzene	mg/kg	0.1	2.4	2.9	60 - 140	81
	Aromatic	Toluene	mg/kg	0.1	2.6	2.9	60 - 140	90
		Ethylbenzene	mg/kg	0.1	2.6	2.9	60 - 140	89
		m/p-xylene	mg/kg	0.2	5.1	5.8	60 - 140	88
		o-xylene	mg/kg	0.1	2.5	2.9	60 - 140	88
	Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	5.1	5	60 - 140	102
		d4-1,2-dichloroethane (Surrogate)	mg/kg	-	5.7	5	60 - 140	113
		d8-toluene (Surrogate)	mg/kg	-	5.5	5	60 - 140	111
		Bromofluorobenzene (Surrogate)	mg/kg	-	6.0	5	60 - 140	119
Volatile Petroleum I	Hydrocarbons in S	oil				Method: ME-(Al	J)-[ENV]AN43	3/AN434/AN410
Sample Number		Parameter	Units	LOR	Re <u>sult</u>	Expected	Criteria %	Reco <u>very %</u>
LB055062.002		TRH C6-C10	mg/kg	25	<25	24.65	60 - 140	99
		TRH C6-C9	mg/kg	20	22	23.2	60 - 140	93
	Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	5.1	5	60 - 140	102
	•	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	5.7	5	60 - 140	113
		d8-toluene (Surrogate)	ma/ka	_	5.5	5	60 - 140	111

mg/kg

mg/kg

6.0

<25

-

25

5

7.25

VPH F Bands

Bromofluorobenzene (Surrogate)

TRH C6-C10 minus BTEX (F1)

119

128

60 - 140

60 - 140

MATRIX SPIKES

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Mercury in Soil						Met	nod: ME-(Al	J)-[ENV]AN312
QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE126027A.01	LB055094.004	Mercury	mg/kg	0.05	0.81	0.63	0.2	91

otal Recoverable Metals in Soil by ICPOES from EPA 200.8 Digest

Total Recoverabl	e Metals in Soil by ICPOES from E	PA 200.8 Digest				Method: ME	-(AU)-[ENV]	AN040/AN320
QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE126027A.00	LB055089.004	Nickel, Ni	mg/kg	0.5	51	1.8	50	98
2		Zinc, Zn	mg/kg	2	59	11	50	96

Matrix spike duplicates are calculated as Relative Percent Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The original result is the analyte concentration of the matrix spike. The Duplicate result is the analyte concentration of the matrix spike duplicate.

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No matrix spike duplicates were required for this job.

SE126027A R0

Samples analysed as received.

Solid samples expressed on a dry weight basis.

QC criteria are subject to internal review according to the SGS QA/QC plan and may be provided on request or alternatively can be found here: http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical%20Documents/MP-AU-ENV-QU-022%20QA%20QC%20Plan.pdf

- * Non-accredited analysis.
- Sample not analysed for this analyte.
- ^ Analysis performed by external laboratory.
- IS Insufficient sample for analysis.
- LNR Sample listed, but not received.
- LOR Limit of reporting.
- QFH QC result is above the upper tolerance.
- QFL QC result is below the lower tolerance.
- ① At least 2 of 3 surrogates are within acceptance criteria.
- ② RPD failed acceptance criteria due to sample heterogeneity.
- ③ Results less than 5 times LOR preclude acceptance criteria for RPD.
- ④ Recovery failed acceptance criteria due to matrix interference.
- Recovery failed acceptance criteria due to the presence of significant concentration of analyte (i.e. the concentration of analyte exceeds the spike level).
- 6 LOR was raised due to sample matrix interference.
- ⁽⁷⁾ LOR was raised due to dilution of significantly high concentration of analyte in sample.
- Image: Image:
- Recovery failed acceptance criteria due to sample heterogeneity.
- 10
- t Refer to Analytical Report comments for further information.

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service, available on request and accessible at http://www.sgs.com/en/Terms-and-Conditions/General-Conditions-of-Services-English.aspx. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any other holder of this document is advised that information contained herein reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This test report shall not be reproduced, except in full.

Ses Refise126027A

Pue Pat 1 0460412014

TATI Standard

Lemko Place PENRITH NSW 27	50		PEN	P O RITH NS	Box 880	Fax: (02) 4722	6161					Page	4	of	F
TO: SGS ENV UNIT 16 33 MADE ALEXAN PH: 02 8594 (ATTN: MS EMIL	UNIT 16 33 MADDOX STREET ALEXANDRIA NSW 2015 H: 02 8594 0400 TTN: MS EMILY YIN Sampling details Location Depth (m) Date Time					499	Sampling E Project Ma	By: nager:	LY JX		Job No: Project: Location: (13138/1 Canterbury	1		5
	Sampling de	tails		Samp	le type	100 M			1.1.1.61.0	a fear		11-14-16-18	C. 17-30		
Location	Depth (m)	Date	Time	Soil	Water	Resu	Its require	ed by: 4	4th April SGS Re	2014 - f. SE12	Standard (6027)	Turnaro	ound Tir	ne	
						Metals As, Cd, Cr, Cu, Pb, Hg, Ni and Zn	Cd	Cu	Hg	Ni	Zn	TPH* & BTEX	PAH		KEEP SAMPLE
BH1	0.05-0.2	18/03/2014	÷	SG/SP	0.0							1.			YES
BH1	0.25-0.35	18/03/2014	*	SG	/******							S 11			YES
2 BH2	0.1-0.4	18/03/2014	4	SG/SP	100000					1	1				YES
BH2	0.45-0.55	18/03/2014		SG							1.				YES
BH3	0-0.3	18/03/2014	-	SG/SP			0								YES
BH3	0.55-0.65	18/03/2014	÷	SG			1		1.1	1		1			YES
S BH4	0-0.3	18/03/2014	18	SG/SP	1.1.1					~	1	1.1			YES
BH4	0.55-0.65	18/03/2014		SG			-								YES
BH5	0-0.15	18/03/2014		SG/SP			101			~	-				YES
BHb	0-0.3	18/03/2014	+	SG/SP			1.1								YES
BHb	0.45-0.55	18/03/2014		SG			10								YES
DU1	0-0.3	18/03/2014	-	SG/SP								1.1	- 10		YES
Namo		Reli	inquished t	бу		D.1.	1				Received by				
JOHN X	(U	1.	Signatur	e		Date	-	Name			Signature		10-100	Date	ach
Legend: WG Water sample, glass bottle SG Soil sample (glass jar) WP Water sample, plastic bottle						e (glass jar)		SP ✓	Soil sample	e (plastic ba	ig)		* Purge & Ti		104.101 172

Lemko PENRII	Place TH NSW 275	0		PEN	P O RITH NS	Box 880	Tel: (02) 4722 Fax: (02) 4722	2700 6161					Page	2	of	5
PH: ATTN:	UNIT 16 33 MADDOX STREET ALEXANDRIA NSW 2015 H: 02 8594 0400 TTN: MS EMILY YIN Sampling details Location Depth (m) Date Time			FAX:	02 8594 04	199	Sampling I Project Ma	By: nager:	JX		Job No: Project: Location: (13138/1 Canterbury				
		Sampling de	tails		Samp	le type	100 million (100 million)			17.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	-			_	-	
	Location	Depth (m)	Date	Time	Soil	Water	Resu	ilts require	ed by: 4 (\$	th April	2014 - f. SE12	Standard 6027)	Turnaro	und Tir	ne	
							Metals As, Cd, Cr, Cu, Pb, Hg, Ni and Zn	Cd	Cu	Hg	Ni	Zn	TPH* & BTEX	PAH		KEEP SAMPLE
-	BH7	0.55-0.65	18/03/2014	*	SG	1		-	-							YES
-	BH8	0.05-0.2	18/03/2014	- 0 1 0	SG/SP			S. 18)					YES
	BH8	0.25-0.35	18/03/2014		SG											YES
	BH9	0.05-0.2	18/03/2014		SG/SP								1			YES
12	BH10	0.25-0.35	18/03/2014		SG								11			YES
12	BHIO	0-0.15	18/03/2014		SG/SP		the second second	~		1		10000	6.1			YES
	BHIO	0.15-0.45	18/03/2014		SG/SP					1			Sec. 201			YES
c	BH11	0.0.15	18/03/2014	*	SG			1. Contraction 1	,						C	YES
6	BH11	02.05	18/03/2014		SG/SP				V				1		E	YES
	BH11	0.65-0.75	18/03/2014		SG/SP			-		V	-		3. (·)			YES
1	BH12	0-0.15	18/03/2014		SC/SD											YES
		0 0.10	Reli	inquiched k	130/3F				v	(YES
	Name Signatu				e	-	Date	-	Mama			Received by				
	JOHN XU ix					28/03/2014		VAALA			Signature		ant a	Date	0	
Legend: WG Water sample, glass bottle SG Soil sam WP Water sample, plastic bottle						Soil sample	e (glass jar)		SP ✓	Soil sample Test require	e (plastic ba	g)		28603 Purge & Tr	ap	1312614.

Lemk	Place	50		PEN	P O RITH NS	Box 880 W 2751	Tel: (02) 4722 Fax: (02) 4722	2700 6161					Page	3	of	5
TO: PH: ATTN	UNIT 16 33 MADDOX STREET ALEXANDRIA NSW 2015 H: 02 8594 0400 TTN: MS EMILY YIN Sampling details Location Depth (m) Date Time				FAX:	02 8594 04	499	Sampling B	3y: nager:	LY JX		Job No: Project: Location: (13138/1			
		Sampling de	tails		Samp	le type		-	17 . T. I							_
	Location	Depth (m)	Date	Time	Soil	Water	Resu	ilts require	ed by: 4 (\$	Ith April	2014 - f. SE12	Standard 6027)	Turnarc	ound Tir	ne	
							Metals As, Cd, Cr, Cu, Pb, Hg, Ni and Zn	Cd	Cu	Hg	Ni	Zn	TPH* & BTEX	РАН		KEEP SAMPLE
18	BH13	0-0.15	18/03/2014		SG/SP	-		1.1	~	No. of Concession						YES
19	BH13	0.3-0.6	18/03/2014		SG/SP					1					1	YES
	BH13	0.95-1.05	18/03/2014	1-1	SG			1								YES
10	BH14	0-0.15	18/03/2014	-	SG/SP			~		1						YES
24	BH14	0.2-0.5	18/03/2014		SG/SP	1				V						YES
00	BH14	0.75-0.85	18/03/2014		SG			1.						1		YES
22	BHIS	0-0.15	18/03/2014		SG/SP			~		V			1. 1. 1. 1.			YES
25	DHID	0.2-0.5	18/03/2014	•	SG/SP			1.		~				1.1.1		YES
17	BH15	1 25 4 25	18/03/2014	4	SG/SP			-		V			11			YES
26	BH16	1.25-1.55	18/03/2014		SG							-	4	-		YES
22	BH16	0.1.0.4	18/03/2014		SG/SP			V	,	V	V	-	1.000			YES
47	DITIO	0.1-0.4	10/03/2014	-	SG/SP				V	1				-		YES
-	Name		Rei	Signatur	by	-	Data	-	Manag			Received by				
	JOHN XU ix					28/03/2014	-	Name		1	Signature		201-010	Date		
Legend WG WP	egend: VG Water sample, glass bottle SG Soil sample (glass jar) VP Water sample, plastic bottle								SP ✓	Soil sample Test require	e (plastic ba	g)		* Purge & T	rap	Signit

Lemko I PENRIT	Place TH NSW 2750	D		PEN	P O RITH NS	Box 880 W 2751	Tel: (02) 4722 Fax: (02) 4722	2700 6161					Page	4	of	5
TO: PH: ATTN:	UNIT 16 33 MADDOX STREET ALEXANDRIA NSW 2015 1: 02 8594 0400 TN: MS EMILY YIN Sampling details Location Depth (m) Date Time				FAX:	02 8594 04	199	Sampling E Project Mai	By: nager:	JX		Job No: Project: Location: C	13138/1			
1.1.1		Sampling det	tails		Samp	le type	Sec.	St. Contracts	6	to la tra		A		V		
1	ocation	Depth (m)	Date	Time	Soil	Water	Resu	ilts require	ed by: 4 (\$	th April	2014 - 9 f. SE12	Standard 6027)	Turnaro	ound Tir	ne	
							Metals As, Cd, Cr, Cu, Pb, Hg, Ni and Zn	Cd	Cu	Hg	Ni	Zn	TPH* & BTEX	PAH		KEEP SAMPLE
-	BH16	1.1-1.4	18/03/2014	•	SG/SP			1		1	5					YES
	BH16	2.1-2.4	18/03/2014		SG/SP			-			1	1	1			YES
_	BH16	3.1-3.4	18/03/2014		SG/SP	1.		- 1	-		-	1				YES
	BH16	3.45-3.55	18/03/2014	-	SG	1.000										YES
51	BH17	0-0.15	18/03/2014		SG/SP			~			~		7		-	YES
32	BH17	0.2-0.5	18/03/2014	8	SG/SP				~	8						YES
	BH17	0.7-1.0	18/03/2014	- 8	SG/SP	1				Marca I	1	1				YES
	BH17	1.25-1.35	18/03/2014		SG	P							1.	n		YES
55	BH18	0-0.15	18/03/2014		SG/SP			~		~	~					YES
14	BH19	0-0.15	18/03/2014		SG/SP			3	~		~	~	1			YES
35	BH20	0-0.15	18/03/2014	8	SG/SP				~	~	1	~				YES
17	BH21	0-0.15	18/03/2014		SG/SP				1		~	~				YES
	Relinquished by										0	Received by				
	IOHN XU						Date		Name			Signature	1		Date	
egend.	JOHN X	5		JX		1	28/03/2014		YANUA		k	anea		28.63	62014	a 5126/1
WG Water sample, glass bottle SG Soil sample (glass jar) WP Water sample, plastic bottle									SP ✓	Soil sample Test requir	e (plastic ba	3)		* Purge & T	rap	

Lemko	Place ITH NSW 2750			PE		O Box 880 ISW 2751	Tel: (02) 4722 2 Fax: (02) 4722	2700 6161					Page	5	of	5
TO: PH:	TO: SGS ENVIRONMENTAL SERVICES UNIT 16 33 MADDOX STREET ALEXANDRIA NSW 2015 PH: 02 8594 0400 FAX: 02 8594 0499 ATTN: MS EMILY YIN					9	Sampling E	by: nager:	LY		Job No: Project: Location: C	13138/1 Canterbury				
ATTN	MS EMILY	YIN						_								
	ALC: NOT	Sampling det	tails		Sam	ple type										
	Location	Depth (m)	Date	Time	Soil	Water	Re	sults requ	lired by	: 4th Ap (SGS F	ril 2014 Ref. SE	- Standa 126027)	rd Turna	round 1	lime	
							Metals As, Cd, Cr, Cu, Pb, Hg, Ni and Zn	Cd	Cu	Hg	Ni	Zn	TPH* & BTEX	PAH		KEEP SAMPLE
36	BH21	0.2-0.5	18/03/2014	8.	SG/SP	1			1							YES
	BH21	0.8-1.1	18/03/2014	à	SG/SP											YES
38	BH21	1.3-1.6	18/03/2014		SG/SP		~									YES
39	BH21	1.75-1.85	18/03/2014	8	SG									~		YES
-																
				-												
			R	elinquished	by							Received	by			
	Name			Signatu	Jre		Date	_	Name		1	Signature	1		Date	
Logon	JOHN XU			jx			28/03/2014	1	explot		llan	la		2810310	LOMOS:	G/h.
WG WP	u. Water samp Water samp	ole, glass bottle ble, plastic bott	e le		SG	Soil sample (glass jar)		SP ✓	Soil sample Test requir	e (plastic ba ed	g)		* Purge & T	rap	

- CLIENT DETAILS		LABORATORY DETA	LABORATORY DETAILS		
Contact	John Xu	Manager	Huong Crawford		
Client	Geotechnique	Laboratory	SGS Alexandria Environmental		
Address	P.O. Box 880 PENRITH NSW 2751	Address	Unit 16, 33 Maddox St Alexandria NSW 2015		
Telephone	02 4722 2700	Telephone	+61 2 8594 0400		
Facsimile	02 4722 6161	Facsimile	+61 2 8594 0499		
Email	john.xu@geotech.com.au	Email	au.environmental.sydney@sgs.com		
Project	13138-1- Canterbury- Additional Analyses	Samples Received	Wed 19/3/2014		
Order Number	(Not specified)	Report Due	Fri 4/4/2014		
Samples	57	SGS Reference	SE126027A		

SUBMISSION DETAILS

This is to confirm that 57 samples were received on Wednesday 19/3/2014. Results are expected to be ready by Friday 4/4/2014. Please quote SGS reference SE126027A when making enquiries. Refer below for details relating to sample integrity upon receipt.

- Sample counts by matrix Date documentation received Samples received without headspace Sample container provider Samples received in correct containers Sample cooling method Complete documentation received
- 26 Soils 28/03/2014@05:26pm Yes SGS Yes Ice Bricks Yes

Type of documentation received Samples received in good order Sample temperature upon receipt Turnaround time requested Sufficient sample for analysis Samples clearly labelled

COC Yes 3.9°C Standard Yes Yes

Samples will be held for one month for water samples and two months for soil samples from date of report, unless otherwise instructed.

COMMENTS

Instructions received at SGS on 28/03/2014@05:26pm. Samples were not registered until the next working day.

To the extent not inconsistent with the other provisions of this document and unless specifically agreed otherwise in writing by SGS, all SGS services are rendered in accordance with the applicable SGS General Conditions of Service accessible at

http://www.sgs.com/en/Terms-and-Conditions/General-Conditions-of-Services-English.aspx as at the date of this document.

Attention is drawn to the limitations of liability and to the clauses of indemnification.

t +61 2 8594 0400

Project 13138-1- Canterbury- Additional Analyses

CLIENT DETAILS

Client Geotechnique

- SUMMARY OF ANALYSIS

No.	Sample ID	Mercury in Soil	Total Recoverable Metals in Soil by ICPOES from
002	BH2 0.1-0.4	-	2
005	BH4 0-0.3	-	2
006	BH5 0-0.15	-	2
013	BH10 0-0.15	1	1
014	BH10 0.15-0.45	1	-
015	BH11 0-0.15	-	1
016	BH11 0.2-0.5	1	-
017	BH12 0-0.15	-	1
018	BH13 0-0.15	-	1
019	BH13 0.3-0.6	1	-
020	BH14 0-0.15	1	1
021	BH14 0.2-0.5	1	-
022	BH15 0-0.15	1	1
023	BH15 0.2-0.5	1	-
024	BH15 0.9-1.2	1	-

CONTINUED OVERLEAF

The above table represents SGS Environmental Services' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details.

CLIENT DETAILS

Client Geotechnique

Project 13138-1- Canterbury- Additional Analyses

			- SUMMARY OF ANALYSIS									
Total Recoverable Metals in Soil by ICPOES from	TRH (Total Recoverable Hydrocarbons) in Soil	VOC's in Soil	Volatile Petroleum Hydrocarbons in Soil									
2	-	-	-									
1	-	-	-									
2	-	-	-									
1	-	-	-									
2	-	-	-									
3	-	-	-									
3	-	-	-									
1	-	-	-									
7	-	-	-									
-	9	12	8									
	Total Recoverable Metals Total Recoverable Metals C 1 1 C 2 C 1 C 1 C 2 C 1 C 2 C 1 C 2 C 2 C 2 C 2 C 2 C 2 C 2 C 2	Total Recoverable MetalsTotal Recoverable MetalsIn Soil by ICPOES fromIn State fromI	Image: constraint of the second sec									

CONTINUED OVERLEAF

The above table represents SGS Environmental Services' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details.

CLIENT DETAILS .

SAMPLE RECEIPT ADVICE

Client Geotechnique Project 13138-1- Canterbury- Additional Analyses SUMMARY OF ANALYSIS Image: Summary of analysis Image: Summary of analysis No. Sample ID Image: Summary of analysis 057 BH21 0-0.15 1

CONTINUED OVERLEAF

The above table represents SGS Environmental Services' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details.

CLIENT DETAILS .

020

022

BH14 0-0.15

BH15 0-0.15

SAMPLE RECEIPT ADVICE

Client Geotechnique Project 13138-1- Canterbury- Additional Analyses - SUMMARY OF ANALYSIS Moisture Content No. Sample ID 002 1 BH2 0.1-0.4 1 006 BH5 0-0.15 1 015 BH11 0-0.15 018 BH13 0-0.15 1

1

1

CONTINUED OVERLEAF

The above table represents SGS Environmental Services' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details.

Testing as per this table shall commence immediately unless the client intervenes with a correction.

CLIENT DETAILS .

033

034

035

BH18 0-0.15

BH19 0-0.15

BH20 0-0.15

SAMPLE RECEIPT ADVICE

Client Geotechnique Project 13138-1- Canterbury- Additional Analyses - SUMMARY OF ANALYSIS Moisture Content Sample ID No. 026 BH16 0-0.1 1 1 027 BH16 0.1-0.4 1 031 BH17 0-0.15

1

1

1

The above table represents SGS Environmental Services' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details.

Testing as per this table shall commence immediately unless the client intervenes with a correction.

CONTINUED OVERLEAF

CLIENT DETAILS Client Geotechnique SUMMARY OF ANALYSIS No. Sample ID 057 BH21 0-0.15

The above table represents SGS Environmental Services' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details.

Testing as per this table shall commence immediately unless the client intervenes with a correction.

ANALYTICAL REPORT

CLIENT DETAILS		LABORATORY DE	TAILS
Contact Client Address	John Xu Geotechnique P.O. Box 880 PENRITH NSW 2751	Manager Laboratory Address	Huong Crawford SGS Alexandria Environmental Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone Facsimile Email	02 4722 2700 02 4722 6161 john.xu@geotech.com.au	Telephone Facsimile Email	+61 2 8594 0400 +61 2 8594 0499 au.environmental.sydney@sgs.com
Project Order Number Samples Date Received	13138-1- Canterbury- Additional Analyses (Not specified) 59 19/3/2014	SGS Reference Report Number Date Reported	SE126027B R0 0000079593 7/4/2014

COMMENTS

Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562(4354).

SIGNATORIES -

Ady Sitte

Andy Sutton Senior Organic Chemist

Kamrul Ahsan Senior Chemist

Dong Liang Metals/Inorganics Team Leader

lung

Huong Crawford Production Manager

SGS Australia Pty Ltd ABN 44 000 964 278

Environmental Services

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015

Australia Australia

t +61 2 8594 0400 f +61 2 8594 0499

www.au.sgs.com

Member of the SGS Group

ANALYTICAL RESULTS

SE126027B R0

PAH (Polynuclear Aromatic Hydrocarbons) in Soil [AN420]

			BH2 0.1-0.4	BH8 0.05-0.2	BH9 0.05-0.2	BH16 0.1-0.4	BH16 3.1-3.4	BH21 0.8-1.1
			SOIL 18/3/2014	SOIL 18/3/2014	SOIL 18/3/2014	SOIL 18/3/2014	SOIL 18/3/2014	SOIL 18/3/2014
PARAMETER	UOM	LOR	SE126027B.002	SE126027B.010	SE126027B.012	SE126027B.027	SE126027B.029	SE126027B.037
Naphthalene	mg/kg	0.10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2-methylnaphthalene	mg/kg	0.10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1-methylnaphthalene	mg/kg	0.10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	0.10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	0.10	<0.1	<0.1	<0.1	<0.1	0.1	<0.1
Fluorene	mg/kg	0.10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.10	<0.1	<0.1	<0.1	0.3	1.0	0.3
Anthracene	mg/kg	0.10	<0.1	<0.1	<0.1	<0.1	0.3	<0.1
Fluoranthene	mg/kg	0.10	<0.1	<0.1	0.2	0.8	1.6	0.6
Pyrene	mg/kg	0.10	<0.1	<0.1	0.1	0.7	1.5	0.5
Benzo(a)anthracene	mg/kg	0.10	<0.1	<0.1	<0.1	0.5	0.8	0.4
Chrysene	mg/kg	0.10	<0.1	<0.1	<0.1	0.3	0.5	0.3
Benzo(b&j)fluoranthene	mg/kg	0.10	<0.1	<0.1	<0.1	0.6	1.0	0.5
Benzo(k)fluoranthene	mg/kg	0.10	<0.1	<0.1	<0.1	0.3	0.5	0.3
Benzo(a)pyrene	mg/kg	0.10	<0.1	<0.1	<0.1	0.6	0.9	0.5
Indeno(1,2,3-cd)pyrene	mg/kg	0.10	<0.1	<0.1	0.1	1.0	1.4	0.8
Dibenzo(a&h)anthracene	mg/kg	0.10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(ghi)perylene	mg/kg	0.10	<0.1	<0.1	0.1	0.7	1.0	0.6
Total PAH	mg/kg	0.80	<0.8	<0.8	<0.8	5.9	10	4.6
Carcinogenic PAHs (as BaP TEQ)	TEQ	0.20	<0.2	<0.2	<0.2	0.8	1.2	0.7

	_	_	BH16 1.1-1.4	BH17 0.7-1.0
PARAMETER	UOM	LOR_	SOIL 18/3/2014 SE126027B.0 <u>58</u>	SOIL 18/3/2014 SE126027B.059
Naphthalene	mg/kg	0.10	<0.1	<0.1
2-methylnaphthalene	mg/kg	0.10	<0.1	<0.1
1-methylnaphthalene	mg/kg	0.10	<0.1	<0.1
Acenaphthylene	mg/kg	0.10	<0.1	<0.1
Acenaphthene	mg/kg	0.10	<0.1	<0.1
Fluorene	mg/kg	0.10	<0.1	<0.1
Phenanthrene	mg/kg	0.10	0.1	0.1
Anthracene	mg/kg	0.10	<0.1	<0.1
Fluoranthene	mg/kg	0.10	0.3	0.3
Pyrene	mg/kg	0.10	0.2	0.2
Benzo(a)anthracene	mg/kg	0.10	0.2	0.2
Chrysene	mg/kg	0.10	0.2	0.2
Benzo(b&j)fluoranthene	mg/kg	0.10	0.3	0.3
Benzo(k)fluoranthene	mg/kg	0.10	0.1	0.1
Benzo(a)pyrene	mg/kg	0.10	0.3	0.2
Indeno(1,2,3-cd)pyrene	mg/kg	0.10	0.4	0.3
Dibenzo(a&h)anthracene	mg/kg	0.10	<0.1	<0.1
Benzo(ghi)perylene	mg/kg	0.10	0.3	0.2
Total PAH	mg/kg	0.80	2.4	2.2
Carcinogenic PAHs (as BaP TEQ)	TEQ	0.20	0.4	0.3

ANALYTICAL RESULTS

SE126027B R0

Moisture Content [AN002]

			BH8 0.05-0.2	BH9 0.05-0.2	BH16 3.1-3.4	BH21 0.8-1.1	BH16 1.1-1.4	BH17 0.7-1.0
DADAUSTED			SOIL 18/3/2014	SOIL 18/3/2014	SOIL 18/3/2014	SOIL 18/3/2014	SOIL 18/3/2014	SOIL 18/3/2014
% Moisture	%	0.50	8.2	22	16	9.2	9.5	16

TCLP (Toxicity Characteristic Leaching Procedure) for Organics/SVOC [AN006]

			BH17 0.2-0.5 SOIL 18/3/2014
PARAMETER	UOM	LOR	SE126027B.032
pH 1:20	pH Units	-	4.2
pH 1:20 plus HCL	pH Units	-	-
Extraction Solution Used	No unit	-	1
Mass of Sample Used*	g	-	25
Volume of ExtractionSolution Used*	mL	-	500
pH TCLP after 18 hours	pH Units	-	4.9

PAH (Polynuclear Aromatic Hydrocarbons) in TCLP Extract [AN420]

			BH17 0.2-0.5
			SOIL 18/3/2014
PARAMETER	UOM	LOR	SE126027B.032
Benzo(a)pyrene	µg/L	0.10	<0.1

SE126027B R0

TCLP (Toxicity Characteristic Leaching Procedure) for Metals [AN006]

			BH21 1.75-1.85 SOIL 18/3/2014
PARAMETER	UOM	LOR	SE126027B.039
pH 1:20	pH Units	-	6.6
pH 1:20 plus HCL	pH Units	-	1.7
Extraction Solution Used	No unit	-	1
Mass of Sample Used*	g	-	13
Volume of ExtractionSolution Used*	mL	-	250
pH TCLP after 18 hours	pH Units	-	5.0

Metals in Soil (TCLP) by ICPOES [AN320/AN321]

			BH21 1.75-1.85
			SOIL 18/3/2014
PARAMETER	UOM	LOR	SE126027B.039
Lead, Pb	mg/L	0.020	0.12

METHOD	
III LITIOD	
AN002	The test is carried out by drying (at either 40°C or 105°C) a known mass of sample in a weighed evaporating basin. After fully dry the sample is re-weighed. Samples such as sludge and sediment having high percentages of moisture will take some time in a drying oven for complete removal of water.
AN006	Contaminants of interest in a waste material are leached out of the waste with a selected leaching solution under controlled conditions. The ratio of sample to extraction fluid is 100g to 2L (1 to 20 by mass). The concentration of each contaminant of interest is determined in the leachate by appropriate methods after separation from the sample by filtering. Base on USEPA 1311.
AN020	Unpreserved water sample is filtered through a 0.45µm membrane filter and acidified with nitric acid similar to APHA3030B.
AN083	Separatory funnels are used for aqueous samples and extracted by transferring an appropriate volume (mass) of liquid into a separatory funnel and adding 3 serial aliquots of dichloromethane. Samples receive a single extraction at pH 7 to recover base / neutral analytes and two extractions at pH < 2 to recover acidic analytes. QC samples are prepared by spiking organic free water with target analytes and extracting as per samples.
AN088	Orbital rolling for Organic pollutants are extracted from soil/sediment by transferring an appropriate mass of sample to a clear soil jar and extracting with 1:1 Dichloromethane/Acetone. Orbital Rolling method is intended for the extraction of semi-volatile organic compounds from soil/sediment samples, and is based somewhat on USEPA method 3570 (Micro Organic extraction and sample preparation). Method 3700.
AN320/AN321	Metals by ICP-OES: Samples are preserved with 10% nitric acid for a wide range of metals and some non-metals. This solution is measured by Inductively Coupled Plasma. Solutions are aspirated into an argon plasma at 8000-10000K and emit characteristic energy or light as a result of electron transitions through unique energy levels. The emitted light is focused onto a diffraction grating where it is separated into components.
AN420	(SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols (etc) in soils, sediments and waters are determined by GCMS/ECD technique following appropriate solvent extraction process (Based on USEPA 3500C and 8270D).

- FOOTNO	TES				
*	Analysis not covered by the scope of accreditation. Indicative data, theoretical holding time exceeded. Performed by outside laboratory.	- NVL IS LNR	Not analysed. Not validated. Insufficient sample for analysis. Sample listed, but not received.	UOM LOR ↑↓	Unit of Measure. Limit of Reporting. Raised/lowered Limit of Reporting.
Samples Solid sam	analysed as received. ples expressed on a dry weight basis.				
Some tota	als may not appear to add up because the to	tal is rounded	after adding up the raw values.		
The QC c http://www	riteria are subject to internal review accordir v.sgs.com.au.pv.sgsv3/~/media/Local/Austra	g to the SGS (alia/Documents	QAQC plan and may be provided on reques /Technical%20Documents/MP-AU-ENV-Q	st or alternatively U-022%20QA%2	can be found here: 20QC%20Plan.pdf
This docu http://www liability, in	ment is issued, on the Client's behalf, by the v.sgs.com/en/Terms-and-Conditions/Genera demnification and jurisdiction issues defined	Company und I-Conditions-of therein.	der its General Conditions of Service availa f-Services-English.aspx. The Client's attent	ble on request a ion is drawn to th	nd accessible at ne limitation of
Any othe and withi a transact	r holder of this document is advised t n the limits of Client's instructions, if ar tion from exercising all their rights and obliga	nat informatio y. The Comp itions under the	n contained hereon reflects the Compa any's sole responsibility is to its Client e transaction documents.	any's findings a and this docur	at the time of its intervention only ment does not exonerate parties to
This repo	rt must not be reproduced, except in full.				

STATEMENT OF QA/QC PERFORMANCE

CLIENT DETAILS		LABORATORY DETAIL	S
Contact	John Xu	Manager	Huong Crawford
Client	Geotechnique	Laboratory	SGS Alexandria Environmental
Address	P.O. Box 880 PENRITH NSW 2751	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	02 4722 2700	Telephone	+61 2 8594 0400
Facsimile	02 4722 6161	Facsimile	+61 2 8594 0499
Email	john.xu@geotech.com.au	Email	au.environmental.sydney@sgs.com
Project	13138-1- Canterbury- Additional Analyses	SGS Reference	SE126027B R0
Order Number	(Not specified)	Report Number	0000079640
Samples	59	Date Reported	07 Apr 2014

COMMENTS

All the laboratory data for each environmental matrix was compared to SGS Environmental Services' stated Data Quality Objectives (DQO). Comments arising from the comparison were made and are reported below.

The data relating to sampling was taken from the Chain of Custody document and was supplied by the Client. This QA/QC Statement must be read in conjunction with the referenced Analytical Report. The Statement and the Analytical Report must not be reproduced except in full.

All Data Quality Objectives were met (within the SGS Alexandria Environmental laboratory).

Sample counts by matrix	10 Soils	Type of documentation received	COC	
Date documentation received	31/03/2014@05:00p	Samples received in good order	Yes	
Samples received without headspace	Yes	Sample temperature upon receipt	3.9°C	
Sample container provider	SGS	Turnaround time requested	Standard	
Samples received in correct containers	Yes	Sufficient sample for analysis	Yes	
Sample cooling method	Ice Bricks	Samples clearly labelled	Yes	
Complete documentation received	Yes			

SGS Australia Pty Ltd

ABN 44 000 964 278

Environmental Services

Alexandria NSW 2015 Alexandria NSW 2015 A

t +61 2 8594 0400 f +61 2 8594 0499

www.au.sgs.com

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Metals in Soil (TCLP) by	ICPOES						Method: ME-(AU)-[ENV]AN320/AN321
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH21 1.75-1.85	SE126027B.039	LB055367	18 Mar 2014	19 Mar 2014	14 Sep 2014	04 Apr 2014	01 Oct 2014	04 Apr 2014
Moisture Content							Method: I	
	O a martia Na	00 8-6	0	Dessived	Esturation Due	Estus stad	Analusia Dua	
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH8 0.05-0.2	SE126027B.010	LB055176	18 Mar 2014	19 Mar 2014	01 Apr 2014	01 Apr 2014	06 Apr 2014	03 Apr 2014
BH9 0.05-0.2	SE126027B.012	LB055176	18 Mar 2014	19 Mar 2014	01 Apr 2014	01 Apr 2014	06 Apr 2014	03 Apr 2014
BH16 3.1-3.4	SE126027B.029	LB055176	18 Mar 2014	19 Mar 2014	01 Apr 2014	01 Apr 2014	06 Apr 2014	03 Apr 2014
BH21 0.8-1.1	SE126027B.037	LB055176	18 Mar 2014	19 Mar 2014	01 Apr 2014	01 Apr 2014	06 Apr 2014	03 Apr 2014
BH16 1.1-1.4	SE126027B.058	LB055176	18 Mar 2014	19 Mar 2014	01 Apr 2014	01 Apr 2014	06 Apr 2014	03 Apr 2014
BH17 0.7-1.0	SE126027B.059	LB055176	18 Mar 2014	19 Mar 2014	01 Apr 2014	01 Apr 2014	06 Apr 2014	03 Apr 2014
PAH (Polynuclear Aromat	ic Hydrocarbons) in Soll						Method: I	ME-(AU)-[ENV]AN420
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH2 0.1-0.4	SE126027B.002	LB055190	18 Mar 2014	19 Mar 2014	01 Apr 2014	01 Apr 2014	11 May 2014	07 Apr 2014
BH8 0.05-0.2	SE126027B.010	LB055190	18 Mar 2014	19 Mar 2014	01 Apr 2014	01 Apr 2014	11 May 2014	07 Apr 2014
BH9 0.05-0.2	SE126027B.012	LB055190	18 Mar 2014	19 Mar 2014	01 Apr 2014	01 Apr 2014	11 May 2014	07 Apr 2014
BH16 0.1-0.4	SE126027B.027	LB055190	18 Mar 2014	19 Mar 2014	01 Apr 2014	01 Apr 2014	11 May 2014	07 Apr 2014
BH16 3.1-3.4	SE126027B.029	LB055190	18 Mar 2014	19 Mar 2014	01 Apr 2014	01 Apr 2014	11 May 2014	07 Apr 2014
BH21 0.8-1.1	SE126027B.037	LB055190	18 Mar 2014	19 Mar 2014	01 Apr 2014	01 Apr 2014	11 May 2014	07 Apr 2014
BH16 1.1-1.4	SE126027B.058	LB055190	18 Mar 2014	19 Mar 2014	01 Apr 2014	01 Apr 2014	11 May 2014	07 Apr 2014
BH17 0.7-1.0	SE126027B.059	LB055190	18 Mar 2014	19 Mar 2014	01 Apr 2014	01 Apr 2014	11 May 2014	07 Apr 2014
PAH (Polynuclear Aromat	ic Hydrocarbons) in TCLP E	Extract					Method: I	ME-(AU)-[ENV]AN420
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH17 0.2-0.5	SE126027B.032	LB055187	18 Mar 2014	19 Mar 2014	01 Apr 2014	01 Apr 2014	11 May 2014	07 Apr 2014
TOLD (Toulaity Characteri	lette Loophing Decodure) fe	- Matala					Mathada I	

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH21 1.75-1.85	SE126027B.039	LB055230	18 Mar 2014	19 Mar 2014	14 Sep 2014	02 Apr 2014	14 Sep 2014	04 Apr 2014

TCLP (Toxicity Character	ristic Leaching Procedure) fo	or Organics/SVOC					Method:	ME-(AU)-[ENV]AN006
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH17 0.2-0.5	SE126027B.032	LB055229	18 Mar 2014	19 Mar 2014	01 Apr 2014	01 Apr 2014	15 Apr 2014	04 Apr 2014

SURROGATES

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

PAH (Polynuclear Aromatic Hydrocarbons) in Soll				Method: ME	E-(AU)-[ENV]AN420
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
2-fluorobiphenyl (Surrogate)	BH2 0.1-0.4	SE126027B.002	%	60 - 130%	88
	BH8 0.05-0.2	SE126027B.010	%	60 - 130%	92
	BH9 0.05-0.2	SE126027B.012	%	60 - 130%	90
	BH16 0.1-0.4	SE126027B.027	%	60 - 130%	90
	BH16 3.1-3.4	SE126027B.029	%	60 - 130%	92
	BH21 0.8-1.1	SE126027B.037	%	60 - 130%	88
	BH16 1.1-1.4	SE126027B.058	%	60 - 130%	86
	BH17 0.7-1.0	SE126027B.059	%	60 - 130%	90
d14-p-terphenyl (Surrogate)	BH2 0.1-0.4	SE126027B.002	%	60 - 130%	104
	BH8 0.05-0.2	SE126027B.010	%	60 - 130%	108
	BH9 0.05-0.2	SE126027B.012	%	60 - 130%	90
	BH16 0.1-0.4	SE126027B.027	%	60 - 130%	98
	BH16 3.1-3.4	SE126027B.029	%	60 - 130%	98
	BH21 0.8-1.1	SE126027B.037	%	60 - 130%	96
	BH16 1.1-1.4	SE126027B.058	%	60 - 130%	108
	BH17 0.7-1.0	SE126027B.059	%	60 - 130%	98
d5-nitrobenzene (Surrogate)	BH2 0.1-0.4	SE126027B.002	%	60 - 130%	90
	BH8 0.05-0.2	SE126027B.010	%	60 - 130%	94
	BH9 0.05-0.2	SE126027B.012	%	60 - 130%	92
	BH16 0.1-0.4	SE126027B.027	%	60 - 130%	88
	BH16 3.1-3.4	SE126027B.029	%	60 - 130%	98
	BH21 0.8-1.1	SE126027B.037	%	60 - 130%	98
	BH16 1.1-1.4	SE126027B.058	%	60 - 130%	92
	BH17 0.7-1.0	SE126027B.059	%	60 - 130%	92
PAH (Polynuclear Aromatic Hydrocarbons) in TCLP Extract				Method: ME	E-(AU)-[ENV]AN420

Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
2-fluorobiphenyl (Surrogate)	BH17 0.2-0.5	SE126027B.032	%	40 - 130%	92
d14-p-terphenyl (Surrogate)	BH17 0.2-0.5	SE126027B.032	%	40 - 130%	102
d5-nitrobenzene (Surrogate)	BH17 0.2-0.5	SE126027B.032	%	40 - 130%	98

METHOD BLANKS

Method: ME-(AU)-[ENV]AN420

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Metals in Soil (TCLP) by ICPOES			Method: ME-	(AU)-[ENV]AN320/AN321
Sample Number	Parameter	Units	LOR	Result
LB055367.001	Lead, Pb	mg/L	0.02	<0.02

PAH (Polynuclear Aromatic Hydrocarbons) in Soil

Sample Number		Parameter	Units	LOR	Result
LB055190.001		Naphthalene	mg/kg	0.1	<0.1
		2-methylnaphthalene	mg/kg	0.1	<0.1
		1-methylnaphthalene	mg/kg	0.1	<0.1
		Acenaphthylene	mg/kg	0.1	<0.1
		Acenaphthene	mg/kg	0.1	<0.1
		Fluorene	mg/kg	0.1	<0.1
		Phenanthrene	mg/kg	0.1	<0.1
		Anthracene	mg/kg	0.1	<0.1
		Fluoranthene	mg/kg	0.1	<0.1
		Pyrene	mg/kg	0.1	<0.1
		Benzo(a)anthracene	mg/kg	0.1	<0.1
		Chrysene	mg/kg	0.1	<0.1
		Benzo(a)pyrene	mg/kg	0.1	<0.1
		Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1
		Dibenzo(a&h)anthracene	mg/kg	0.1	<0.1
		Benzo(ghi)perylene	mg/kg	0.1	<0.1
		Total PAH	mg/kg	0.8	<0.8
	Surrogates	d5-nitrobenzene (Surrogate)	%	-	102
		2-fluorobiphenyl (Surrogate)	%	-	106
		d14-p-terphenyl (Surrogate)	%	-	112
PAH (Polynuclear Aromatic	Hydrocarbons) in TCLP Extra	*		Metho	od: ME-(AU)-[ENV]AN420
Sample Number		Parameter	Units	LOR	Result
LB055187.001		Benzo(a)pyrene	µg/L	0.1	<0.1
	Surrogates	d5-nitrobenzene (Surrogate)	%	-	114
, i i i i i i i i i i i i i i i i i i i		2-fluorobiphenyl (Surrogate)	%	-	112
		d14-p-terphenyl (Surrogate)	%	-	118

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

PAH (Polynuclear	Aromatic Hydrocarbons) in Soil					Meth	od: ME-(AU)-	(ENVJAN420					
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %					
SE126313.001	LB055190.018		Naphthalene	mg/kg	0.1	0	0	200	0					
			2-methylnaphthalene	mg/kg	0.1	0	0	200	0					
			1-methylnaphthalene	mg/kg	0.1	0	0	200	0					
			Acenaphthylene	mg/kg	0.1	0	0	200	0					
			Acenaphthene	mg/kg	0.1	0	0	200	0					
			Fluorene	mg/kg	0.1	0	0	200	0					
			Phenanthrene	mg/kg	0.1	0	0	200	0					
			Anthracene	mg/kg	0.1	0	0	200	0					
				Fluoranthene mg/kg	0.1	0	0	200	0					
			Pyrene	mg/kg	0.1	0	0	200	0					
			Benzo(a)anthracene	mg/kg	0.1	0	0	200	0					
			Chrysene	mg/kg	0.1	0	0	200	0					
								Benzo(b&j)fluoranthene	mg/kg	0.1	0	0	200	0
			Benzo(k)fluoranthene	mg/kg	0.1	0	0	200	0					
			Benzo(a)pyrene	mg/kg	0.1	0	0	200	0					
			Indeno(1,2,3-cd)pyrene	mg/kg	0.1	0.12	0.12	113	0					
			Dibenzo(a&h)anthracene	mg/kg	0.1	0	0	200	0					
			Benzo(ghi)perylene	mg/kg	0.1	0.13	0.13	107	0					
			Total PAH	mg/kg	0.8	0.25	0.25	200	0					
			Carcinogenic PAHs (as BaP TEQ)-assume results	TEQ (mg/kg)	0.2	0.0133	0.0133	200	0					
	Surrogates		d5-nitrobenzene (Surrogate)	mg/kg	-	0.46	0.5	30	8					
			2-fluorobiphenyl (Surrogate)	mg/kg	-	0.46	0.46	30	0					
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.54	0.57	30	5					

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Metals in Soil (TCLP) by ICPOES					Method:	ME-(AU)-[EN\	/JAN320/AN321
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB055367.002	Lead, Pb	mg/L	0.02	2.0	2	80 - 120	99

PAH (Polynuclear Aromatic Hydrocarbons) in Soil

PAH (Polynuclear	Aromatic Hydroca	rbons) in Soil					I	/ethod: ME-(A	U)-[ENV]AN420
Sample Number		Parameter		Units	LOR	Result	Expected	Criteria %	Recovery %
LB055190.002		Naphthalene		mg/kg	0.1	3.8	4	60 - 140	95
		Acenaphthylene		mg/kg	0.1	3.8	4	60 - 140	95
		Acenaphthene		mg/kg	0.1	3.9	4	60 - 140	97
		Phenanthrene		mg/kg	0.1	3.8	4	60 - 140	95
		Anthracene		mg/kg	0.1	3.4	4	60 - 140	84
		Fluoranthene		mg/kg	0.1	4.1	4	60 - 140	102
		Pyrene		mg/kg mg/kg mg/kg	0.1	3.9	4	60 - 140	97
		Benzo(a)pyrene			0.1	4.5	4	60 - 140	112
	Surrogates	d5-nitrobenzene (Surrogate)			-	0.5	0.5	40 - 130	90
		2-fluorobiphenyl (Surrogate)		mg/kg	-	0.5	0.5	40 - 130	94
		d14-p-terphenyl (Surrogate)		mg/kg	-	0.5	0.5	40 - 130	98
PAH (Polynuclear	Aromatic Hydroca	rbons) in TCLP Extract					I	/lethod: ME-(A	U)-[ENV]AN420
Sample Number		Parameter		Units	LOR	Result	Expected	Criteria %	Recovery %
LB055187.002		Benzo(a)pyrene		µg/L	0.1	47	40	60 - 140	118
	Surrogates	d5-nitrobenzene (Surrogate)		µg/L	-	0.5	0.5	40 - 130	94
		2-fluorobiphenyl (Surrogate)		µg/L	-	0.5	0.5	40 - 130	94
		d14-p-terphenyl (Surrogate)		µg/L	-	0.5	0.5	40 - 130	94

MATRIX SPIKES

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No matrix spikes were required for this job.

Matrix spike duplicates are calculated as Relative Percent Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The original result is the analyte concentration of the matrix spike. The Duplicate result is the analyte concentration of the matrix spike duplicate.

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No matrix spike duplicates were required for this job.

SE126027B R0

Samples analysed as received.

Solid samples expressed on a dry weight basis.

QC criteria are subject to internal review according to the SGS QA/QC plan and may be provided on request or alternatively can be found here: http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical%20Documents/MP-AU-ENV-QU-022%20QA%20QC%20Plan.pdf

- * Non-accredited analysis.
- Sample not analysed for this analyte.
- ^ Analysis performed by external laboratory.
- IS Insufficient sample for analysis.
- LNR Sample listed, but not received.
- LOR Limit of reporting.
- QFH QC result is above the upper tolerance.
- QFL QC result is below the lower tolerance.
- ① At least 2 of 3 surrogates are within acceptance criteria.
- ② RPD failed acceptance criteria due to sample heterogeneity.
- ③ Results less than 5 times LOR preclude acceptance criteria for RPD.
- ④ Recovery failed acceptance criteria due to matrix interference.
- Recovery failed acceptance criteria due to the presence of significant concentration of analyte (i.e. the concentration of analyte exceeds the spike level).
- 6 LOR was raised due to sample matrix interference.
- ⁽⁷⁾ LOR was raised due to dilution of significantly high concentration of analyte in sample.
- Image: Image:
- Recovery failed acceptance criteria due to sample heterogeneity.
- 10
- t Refer to Analytical Report comments for further information.

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service, available on request and accessible at http://www.sgs.com/en/Terms-and-Conditions/General-Conditions-of-Services-English.aspx. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any other holder of this document is advised that information contained herein reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This test report shall not be reproduced, except in full.

SUS Neft SEI26027B Due Pate 1 07104 12014 TAT, Standard.

GFOTECHNIQUE PTY I TD

Laboratory Test Request / Chain of Custody Record

Lemko	Place ITH NSW 275	0		PEN	P O	Box 880 W 2751	Tel: (02) 4722 2 Fax: (02) 4722 6	700 5161				Page	1	of	1
TO: PH: ATTN	UNIT 16 33 MADDOX STREET ALEXANDRIA NSW 2015 H: 02 8594 0400 TTN: MS EMILY YIN Sampling details				FAX:	02 8594 0499		Sampling B Project Mar	y: nager:	JX	Job No: Project: Location:	13138/1 Canterbury			
1		Sampling de	tails		Samp	ole type	201-0				10044 01 1.	-	1.923		
	Location	Depth (m)	Date	Time	Soil	Water	Resu	Its require	ed by: 7 (\$	th Ap	ril 2014 - Standard Ref. SE126027)	Turnaro	und II	me	
							РАН	TCLP for benzo(a)py rene	TCLP for Pb				6-40-3		KEEP SAMPLE
2	BH2	0.1-0.4	18/03/2014	1	SG	1	1			1		- C			YES
10	BH8	0.05-0.2	18/03/2014	-	SG		1					15			YES
12	BH9	0.05-0.2	18/03/2014	-	SG		1							1	YES
27	BH16	0.1-0.4	18/03/2014	4	SG		~								YES
58	BH16	1.1-1.4	18/03/2014	-	SG		~								YES
29	BH16	3.1-3.4	18/03/2014	-	SG	1.0.0	~								YES
32	BH17	0.2-0.5	18/03/2014		SG			1	/						YES
59	BH17	0.7-1.0	18/03/2014	-	SG		1		14			1.5			YES
37	BH21	0.8-1.1	18/03/2014	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	SG	A CONTRACTOR	1								YES
39	BH21	1.75-1.85	18/03/2014	•	SG			-	~	-					YES
_			Pa	linguished	by					-	Received by		-		
	Name			Signatu	re		Date		Name	-	Signature			Date	
	JOHN	(U		ix			31/03/2014	hes	ALLA		Karea		31631	201405	PM
Legen WG WP	Name Sign: JOHN XU j: Legend: j: WG Water sample, glass bottle WP Water sample, plastic bottle			Signatu jx	SG	Soil sample (31/03/2014 glass jar)	14	SP ✓	Soil sar Test ree	mple (plastic bag)		3[103] Purge &	Date रेञ्प छ S Trap	PM

CLIENT DETAIL	S	LABORATORY DET	AILS	
Contact	John Xu	Manager	Huong Crawford	
Client	Geotechnique	Laboratory	SGS Alexandria Environmental	
Address	P.O. Box 880 PENRITH NSW 2751	Address	Unit 16, 33 Maddox St Alexandria NSW 2015	
Telephone	02 4722 2700	Telephone	+61 2 8594 0400	
Facsimile	02 4722 6161	Facsimile	+61 2 8594 0499	
Email	john.xu@geotech.com.au	Email	au.environmental.sydney@sgs.com	
Project	13138-1- Canterbury- Additional Analyses	Samples Received	Wed 19/3/2014	
Order Number	(Not specified)	Report Due	Mon 7/4/2014	
Samples	59	SGS Reference	SE126027B	

_ SUBMISSION DETAILS

This is to confirm that 59 samples were received on Wednesday 19/3/2014. Results are expected to be ready by Monday 7/4/2014. Please quote SGS reference SE126027B when making enquiries. Refer below for details relating to sample integrity upon receipt.

- Sample counts by matrix Date documentation received Samples received without headspace Sample container provider Samples received in correct containers Sample cooling method Complete documentation received
- 10 Soils 31/03/2014@05:00pm Yes SGS Yes Ice Bricks Yes

Type of documentation received Samples received in good order Sample temperature upon receipt Turnaround time requested Sufficient sample for analysis Samples clearly labelled COC Yes 3.9°C Standard Yes Yes

Samples will be held for one month for water samples and two months for soil samples from date of report, unless otherwise instructed.

COMMENTS

Instructions received at SGS on 31/03/2014@05:00pm. Samples were not registered until the next working day.

To the extent not inconsistent with the other provisions of this document and unless specifically agreed otherwise in writing by SGS, all SGS services are rendered in accordance with the applicable SGS General Conditions of Service accessible at

http://www.sgs.com/en/Terms-and-Conditions/General-Conditions-of-Services-English.aspx as at the date of this document.

Attention is drawn to the limitations of liability and to the clauses of indemnification.

Alexandria NSW 2015 Alexandria NSW 2015 Australia Australia

t +61 2 8594 0400

Project 13138-1- Canterbury- Additional Analyses

CLIENT DETAILS

Client Geotechnique

- SUMMARY OF ANALYSIS

No.	Sample ID	Moisture Content	PAH (Polynuclear Aromatic Hydrocarbons) in
002	BH2 0.1-0.4	-	23
010	BH8 0.05-0.2	1	23
012	BH9 0.05-0.2	1	23

CONTINUED OVERLEAF

The above table represents SGS Environmental Services' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details.

Testing as per this table shall commence immediately unless the client intervenes with a correction.

CLIENT DETAILS

Client Geotechnique

Project 13138-1- Canterbury- Additional Analyses

TCLP (Toxicity Characteristic Leaching	TCLP (Toxicity Characteristic Leaching
-	-
-	-
-	6
-	-
6	_
	TCLP (Toxicity

_ CONTINUED OVERLEAF

The above table represents SGS Environmental Services' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details.

Testing as per this table shall commence immediately unless the client intervenes with a correction.

CLIENT DETAILS

Client Geotechnique

- SUMMARY OF ANALYSIS

No.	Sample ID	Moisture Content	PAH (Polynuclear Aromatic Hydrocarbons) in
058	BH16 1.1-1.4	1	23
059	BH17 0.7-1.0	1	23

The above table represents SGS Environmental Services' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details.

Testing as per this table shall commence immediately unless the client intervenes with a correction.

Project 13138-1- Canterbury- Additional Analyses

ANALYTICAL REPORT

CLIENT DETAILS		LABORATORY DE	LABORATORY DETAILS				
Contact Client Address	John Xu Geotechnique P.O. Box 880 PENRITH NSW 2751	Manager Laboratory Address	Huong Crawford SGS Alexandria Environmental Unit 16, 33 Maddox St Alexandria NSW 2015				
Telephone Facsimile Email	02 4722 2700 02 4722 6161 john.xu@geotech.com.au	Telephone Facsimile Email	+61 2 8594 0400 +61 2 8594 0499 au.environmental.sydney@sgs.com				
Project Order Number Samples Date Received	13138-1- Canterbury- Additional Analyses (Not specified) 59 19/3/2014	SGS Reference Report Number Date Reported	SE126027C R0 0000079657 7/4/2014				

COMMENTS

Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562(4354).

SIGNATORIES -

Dong Liang Metals/Inorganics Team Leader

SGS Australia Pty Ltd ABN 44 000 964 278 Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015

5 Australia 5 Australia t +61 2 8594 0400 f

00 **f** +61 2 8594 0499

www.au.sgs.com

TOC in Soil [AN188]

			BH21 1.75-1.85
			SOIL 18/3/2014
PARAMETER	UOM	LOR	SE126027C.039
Total Organic Carbon	%w/w	0.050	2.8

METHOD SUMMARY

SE126027C R0

— METHOD – AN188

METHODOLOGY SUMMARY

The organic material in the soil sample is oxidised with chromic acid in the presence of excess sulphuric acid, without external heat being applied. The excess dichromate ion is determined by titration with standard ammonium iron (II) sulphate solution and the amount of oxidised material is calculated from the quantity of dichromate reduced. Referenced to NEPM 105 and AS1289.1.1.1.

FOOTNOTES -

- * Analysis not covered by the
- scope of accreditation.** Indicative data, theoretical
- holding time exceeded.
- Performed by outside laboratory.

NVL M IS I LNR S

Not analysed. Not validated. Insufficient sample for analysis. Sample listed, but not received. UOM LOR ↑↓

Unit of Measure. Limit of Reporting. Raised/lowered Limit of Reporting.

Samples analysed as received. Solid samples expressed on a dry weight basis.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: http://www.sgs.com.au.pv.sgsv3/~/media/Local/Australia/Documents/Technical%20Documents/MP-AU-ENV-QU-022%20QA%20QC%20Plan.pdf

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/en/Terms-and-Conditions/General-Conditions-of-Services-English.aspx. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This report must not be reproduced, except in full.

STATEMENT OF QA/QC PERFORMANCE

CLIENT DETAILS		LABORATORY DETAIL	_S
Contact	John Xu	Manager	Huong Crawford
Client	Geotechnique	Laboratory	SGS Alexandria Environmental
Address	P.O. Box 880 PENRITH NSW 2751	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	02 4722 2700	Telephone	+61 2 8594 0400
Facsimile	02 4722 6161	Facsimile	+61 2 8594 0499
Email	john.xu@geotech.com.au	Email	au.environmental.sydney@sgs.com
Project	13138-1- Canterbury- Additional Analyses	SGS Reference	SE126027C R0
Order Number	(Not specified)	Report Number	0000079658
Samples	59	Date Reported	07 Apr 2014

COMMENTS

All the laboratory data for each environmental matrix was compared to SGS Environmental Services' stated Data Quality Objectives (DQO). Comments arising from the comparison were made and are reported below.

The data relating to sampling was taken from the Chain of Custody document and was supplied by the Client. This QA/QC Statement must be read in conjunction with the referenced Analytical Report. The Statement and the Analytical Report must not be reproduced except in full.

All Data Quality Objectives were met (within the SGS Alexandria Environmental laboratory).

Sample counts by matrix	1 Soil	Type of documentation received	COC	
Date documentation received	01/04/2014@09:25a	Samples received in good order	Yes	
Samples received without headspace	Yes	Sample temperature upon receipt	3.9°C	
Sample container provider	SGS	Turnaround time requested	Standard	
Samples received in correct containers	Yes	Sufficient sample for analysis	Yes	
Sample cooling method	Ice Bricks	Samples clearly labelled	Yes	
Complete documentation received	Yes			

Alexandria NSW 2015

SGS Australia Pty Ltd

ABN 44 000 964 278

Environmental Services

Unit 16 33 Maddox St

PO Box 6432 Bourke Rd BC

HOLDING TIME SUMMARY

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

TOC in Soil Method: ME-(AU						ME-(AU)-[ENV]AN188		
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH21 1.75-1.85	SE126027C.039	LB055268	18 Mar 2014	19 Mar 2014	15 Apr 2014	03 Apr 2014	15 Apr 2014	07 Apr 2014

SURROGATES

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No surrogates were required for this job.

METHOD BLANKS

SE126027C R0

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Sample Number Parameter Units LOR

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Original Duplicate Parameter Units LOR

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

TOC in Soil Method				lethod: ME-(A	U)-[ENV]AN188		
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB055268.002	Total Organic Carbon	%w/w	0.05	NA	0.325	80 - 120	93

MATRIX SPIKES

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

QC Sample Sample Number Parameter Units LOR

Matrix spike duplicates are calculated as Relative Percent Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The original result is the analyte concentration of the matrix spike. The Duplicate result is the analyte concentration of the matrix spike duplicate.

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No matrix spike duplicates were required for this job.

SE126027C R0

Samples analysed as received.

Solid samples expressed on a dry weight basis.

QC criteria are subject to internal review according to the SGS QA/QC plan and may be provided on request or alternatively can be found here: http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical%20Documents/MP-AU-ENV-QU-022%20QA%20QC%20Plan.pdf

- * Non-accredited analysis.
- Sample not analysed for this analyte.
- ^ Analysis performed by external laboratory.
- IS Insufficient sample for analysis.
- LNR Sample listed, but not received.
- LOR Limit of reporting.
- QFH QC result is above the upper tolerance.
- QFL QC result is below the lower tolerance.
- ① At least 2 of 3 surrogates are within acceptance criteria.
- ② RPD failed acceptance criteria due to sample heterogeneity.
- ③ Results less than 5 times LOR preclude acceptance criteria for RPD.
- ④ Recovery failed acceptance criteria due to matrix interference.
- Recovery failed acceptance criteria due to the presence of significant concentration of analyte (i.e. the concentration of analyte exceeds the spike level).
- 6 LOR was raised due to sample matrix interference.
- ⁽⁷⁾ LOR was raised due to dilution of significantly high concentration of analyte in sample.
- Image: Image:
- Recovery failed acceptance criteria due to sample heterogeneity.
- 10
- t Refer to Analytical Report comments for further information.

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service, available on request and accessible at http://www.sgs.com/en/Terms-and-Conditions/General-Conditions-of-Services-English.aspx. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any other holder of this document is advised that information contained herein reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This test report shall not be reproduced, except in full.

SUS MULISEI26027C

Due Patil Orloy 12014 TATI Standard

GFOTFCHNIQUE PTY I TD

Laboratory Test Request / Chain of Custody Record

Lemko Place PENRITH NSW 27	50		PEN	P O RITH NS	Box 880 SW 2751	Tel: (02) 472 Fax: (02) 473	22 2700 22 6161			Page	1	of	1
TO: SGS EN UNIT 16 33 MADI ALEXAN PH: 02 8594	VIRONMENTAL DOX STREET DRIA NSW 20 [,] 0400	SERVICES		FAX:	02 8594 0499		Sampling By: Project Manager:	LY JX	Job No: Project: Location:	13138/1 Canterbury			
ATTN: MO EMIL	Sampling de	tails		Sam	ole type	0.500			000000000000000000000000000000000000000		diana.		
Location	Depth (m)	Date	Time	Soil	Water	Res	sults required by	y: 7th Apr (SGS Ro	il 2014 - Standarc ef. SE126027)	d Turnaro	und Ti	me	
	8 5.5			1	11	TOC (%)							KEEP SAMPLE
39 BH21	1.75-1.85	18/03/2014	-	SG		1							YES
				-									
				1000				-		-	-		
			2							1.			
			-	-						-			
	10.000											-	
					1.5.1.5								
	-			-									
	- 4	Re	linquished b	ру					Received by	/			
Name	9		Signatur	е		Date	Nar	ne	Signature			Date	
JOHN .	χU		jx			1/04/2014	haria	6	harla		alloy	2014.00	12SAN.
WG Water sa WP Water sa	mple, glass bottle mple, plastic bott	e tle		SG	Soil sample (glass jar)	SP ✓	Soil samp Test requ	ble (plastic bag) ired		Purge & T	rap	

CLIENT DETAIL	S	LABORATORY DETA	LABORATORY DETAILS					
Contact	John Xu	Manager	Huong Crawford					
Client	Geotechnique	Laboratory	SGS Alexandria Environmental					
Address	P.O. Box 880 PENRITH NSW 2751	Address	Unit 16, 33 Maddox St Alexandria NSW 2015					
Telephone	02 4722 2700	Telephone	+61 2 8594 0400					
Facsimile	02 4722 6161	Facsimile	+61 2 8594 0499					
Email	john.xu@geotech.com.au	Email	au.environmental.sydney@sgs.com					
Project	13138-1- Canterbury- Additional Analyses	Samples Received	Wed 19/3/2014					
Order Number	(Not specified)	Report Due	Mon 7/4/2014					
Samples	59	SGS Reference	SE126027C					

_ SUBMISSION DETAILS

This is to confirm that 59 samples were received on Wednesday 19/3/2014. Results are expected to be ready by Monday 7/4/2014. Please quote SGS reference SE126027C when making enquiries. Refer below for details relating to sample integrity upon receipt.

- Sample counts by matrix Date documentation received Samples received without headspace Sample container provider Samples received in correct containers Sample cooling method Complete documentation received
- 1 Soil 01/04/2014@09:25am Yes SGS Yes Ice Bricks Yes

Type of documentation received Samples received in good order Sample temperature upon receipt Turnaround time requested Sufficient sample for analysis Samples clearly labelled COC Yes 3.9°C Standard Yes Yes

Samples will be held for one month for water samples and two months for soil samples from date of report, unless otherwise instructed.

COMMENTS -

Instructions received at SGS on 01/04/2014@09:25am.

To the extent not inconsistent with the other provisions of this document and unless specifically agreed otherwise in writing by SGS, all SGS services are rendered in

accordance with the applicable SGS General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions/General-Conditions-of-Services-English.aspx as at the date of this document.

Attention is drawn to the limitations of liability and to the clauses of indemnification.

Australia Australia t +61 2 8594 0400 f +61 2 8594 0499

CLIENT DETAILS Project 13138-1- Canterbury- Additional Analyses SUMMARY OF ANALYSIS Image: Client State of the state o

The above table represents SGS Environmental Services' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details.

Testing as per this table shall commence immediately unless the client intervenes with a correction.

ANALYTICAL REPORT

CLIENT DETAILS		LABORATORY DE	TAILS	
Contact Client Address	John Xu Geotechnique P.O. Box 880 PENRITH NSW 2751	Manager Laboratory Address	Huong Crawford SGS Alexandria Environmental Unit 16, 33 Maddox St Alexandria NSW 2015	
Telephone Facsimile Email	02 4722 2700 02 4722 6161 john.xu@geotech.com.au	Telephone Facsimile Email	+61 2 8594 0400 +61 2 8594 0499 au.environmental.sydney@sgs.com	
Project Order Number Samples Date Received	13138-1 - Canterbury - Add (Not specified) 57 7/4/2014	SGS Reference Report Number Date Reported	SE126027D R0 0000080081 11/4/2014	

COMMENTS

Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562(4354).

SIGNATORIES -

Ady Sith

Andy Sutton Senior Organic Chemist

fuerous lostosicos

Snezana Kostoska 2IC Inorganics Chemist

Kamrul Ahsan Senior Chemist

upann

Sheila Lepasana Senior Technician

SGS Australia Pty Ltd ABN 44 000 964 278

Environmental Services

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australia **t** · Australia

t +61 2 8594 0400 f

f +61 2 8594 0499

www.au.sgs.com

pH in soil (1:5) [AN101]

			BH5 0-0.15	BH19 0-0.15
		105	SOIL 18/3/2014	SOIL 18/3/2014
PARAMETER	UOM	LOR	SE126027D.006	SE126027D.034
pH	pH Units	-	6.7	5.9

Exchangeable Cations and Cation Exchange Capacity (CEC/ESP/SAR) [AN122]

PARAMETER	UOM	LOR	BH5 0-0.15 SOIL 18/3/2014 SE126027D.006	BH19 0-0.15 SOIL 18/3/2014 SE126027D.034
Exchangeable Sodium, Na	mg/kg	2.0	36	20
Exchangeable Sodium, Na	meq/100g	0.010	0.16	0.09
Exchangeable Sodium Percentage*	%	0.10	3.7	1.8
Exchangeable Potassium, K	mg/kg	2.0	35	61
Exchangeable Potassium, K	meq/100g	0.010	0.09	0.16
Exchangeable Potassium	%	0.10	2.1	3.3
Exchangeable Calcium, Ca	mg/kg	2.0	640	720
Exchangeable Calcium, Ca	meq/100g	0.010	3.2	3.6
Exchangeable Calcium Percentage*	%	0.10	76.2	75.5
Exchangeable Magnesium, Mg	mg/kg	2.0	93	110
Exchangeable Magnesium, Mg	meq/100g	0.020	0.76	0.92
Exchangeable Magnesium	%	0.10	17.9	19.4
Cation Exchange Capacity	meq/100g	0.020	4.2	4.7

SE126027D R0

TOC in Soil [AN188]

			BH19 0-0.15
			SOIL 18/3/2014
PARAMETER	UOM	LOR	SE126027D.034
Total Organic Carbon	%w/w	0.050	1.6

Total Recoverable Metals in Soil by ICPOES from EPA 200.8 Digest [AN040/AN320]

			BH16 2.1-2.4	BH16 3.1-3.4	BH21 0.8-1.1
PARAMETER	LIOM	LOR	SOIL 18/3/2014 SE126027D.028	SOIL 18/3/2014 SE126027D.029	SOIL 18/3/2014 SE126027D.037
Copper, Cu	mg/kg	0.50	13	11	13

SE126027D R0

Moisture Content [AN002]

			BH5 0-0.15	BH16 2.1-2.4	BH16 3.1-3.4	BH19 0-0.15	BH21 0.8-1.1
			SOIL 18/3/2014	SOIL 18/3/2014	SOIL 18/3/2014	SOIL 18/3/2014	SOIL 18/3/2014
PARAMETER	UOM	LOR	SE126027D.006	SE126027D.028	SE126027D.029	SE126027D.034	SE126027D.037
% Moisture	%	0.50	15	13	17	10	10

METHOD	
AN002	The test is carried out by drying (at either 40°C or 105°C) a known mass of sample in a weighed evaporating
	basin. After fully dry the sample is re-weighed. Samples such as sludge and sediment having high percentages of moisture will take some time in a drying oven for complete removal of water.
AN040	A portion of sample is digested with Nitric acid to decompose organic matter and Hydrochloric acid to complete the digestion of metals and then filtered for analsysis by ASS or ICP as per USEPA Method 200.8.
AN040/AN320	A portion of sample is digested with nitric acid to decompose organic matter and hydrochloric acid to complete the digestion of metals. The digest is then analysed by ICP OES with metals results reported on the dried sample basis. Based on USEPA method 200.8 and 6010C.
AN101	pH in Soil Sludge Sediment and Water: pH is measured electrometrically using a combination electrode (glass plus reference electrode) and is calibrated against 3 buffers purchased commercially. For soils, an extract with water (or 0.01M CaCl2) is made at a ratio of 1:5 and the pH determined and reported on the extract. Reference APHA 4500-H+.
AN122	Exchangeable Cations, CEC and ESP: Soil sample is extracted in 1M Ammonium Acetate at pH=7 (or 1M Ammonium Chloride at pH=7) with cations (Na, K, Ca & Mg) then determined by ICP OES/ICP MS and reported as Exchangeable Cations. For saline soils, these results can be corrected for water soluble cations and reported as Exchangeable cations in meq/100g or soil can be pretreated (aqueous ethanol/aqueous glycerol) prior to extraction. Cation Exchange Capacity (CEC) is the sum of the exchangeable cations in meq/100g.
AN188	The organic material in the soil sample is oxidised with chromic acid in the presence of excess sulphuric acid, without external heat being applied. The excess dichromate ion is determined by titration with standard ammonium iron (II) sulphate solution and the amount of oxidised material is calculated from the quantity of dichromate reduced. Referenced to NEPM 105 and AS1289.1.1.1.

FOOTNOTES Analysis not covered by the Not analysed. UOM Unit of Measure. scope of accreditation. NVL Not validated. Limit of Reporting. LOR Insufficient sample for analysis. Indicative data, theoretical Raised/lowered Limit of IS î↓ holding time exceeded. LNR Sample listed, but not received. Reporting. Performed by outside ٨ laboratory. Samples analysed as received. Solid samples expressed on a dry weight basis. Some totals may not appear to add up because the total is rounded after adding up the raw values. The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: http://www.sgs.com.au.pv.sgsv3/~/media/Local/Australia/Documents/Technical%20Documents/MP-AU-ENV-QU-022%20QA%20QC%20Plan.pdf This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/en/Terms-and-Conditions/General-Conditions-of-Services-English.aspx. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This report must not be reproduced, except in full.

too received 7/4/17 @ 10:57 Que

Acto Date: 11/4/14 101: STANDARD

GEOTECHNIQUE PTY I TD

Laboratory Test Request / Chain of Custody Record

Lemko Place	50		PENE	P O	Box 880	Tel: (02) 4722 Fax: (02) 472	2 2700 2 6161				Page	1	of	1
CO: SGS ENV UNIT 16 33 MADD ALEXANI PH: 02 8594 0	TRONMENTAL S OX STREET DRIA NSW 201)400 Y YIN	SERVICES 5		FAX:	02 8594 045	99	Sampling E Project Ma	iy: nager:	LY JX	Job No: Project: Location: (13138/1 Canterbury			
	Sampling det	ails		Samp	ole type		Carl and Carl	A			-	1		
Location	Depth (m)	Date	Time	Soil	Water	Res	ults require	ed by:	11th April 2 (SGS Ref.	2014 - Standard SE126027)	Turnaro	und Ti	me	_
						Cu	CEC	рН	TOC (%)					KEEP SAMPLE
C BH5	0-0.15	18/03/2014		SG			1	~						YES
BH16	2.1-2.4	18/03/2014		SG		1								YES
19 BH16	3.1-3.4	18/03/2014	1	SG		~								YES
24 BH19	0-0.15	18/03/2014	+	SG			1	1	~	A	2			YES
77 BH21	0.8-1.1	18/03/2014	-	SG		~								YES
			-	-					-		-			
										Dessived by				1
Nam	-	Re	Signatur	by		Date		Name		Signature			Date	
IOHN	XII		ix	C		7/04/2014		Bhanla	yn	oignature		5141	V I	0.57 2.
Legend: WG Water sa WP Water sa	mple, glass botti	le itle		SG	Soil sample	(glass jar)		SP ✓) Soil sample (p Test required	astic bag)		Purge & T	rap	

_	- CLIENT DETAILS	S	LABORATORY DETA	ILS
	Contact	John Xu	Manager	Huong Crawford
	Client	Geotechnique	Laboratory	SGS Alexandria Environmental
	Address	P.O. Box 880 PENRITH NSW 2751	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
	Telephone	02 4722 2700	Telephone	+61 2 8594 0400
	Facsimile	02 4722 6161	Facsimile	+61 2 8594 0499
	Email	john.xu@geotech.com.au	Email	au.environmental.sydney@sgs.com
	Project	13138-1 - Canterbury - Add	Samples Received	Mon 7/4/2014
	Order Number	(Not specified)	Report Due	Fri 11/4/2014
	Samples	57	SGS Reference	SE126027D

_ SUBMISSION DETAILS

This is to confirm that 57 samples were received on Monday 7/4/2014. Results are expected to be ready by Friday 11/4/2014. Please quote SGS reference SE126027D when making enquiries. Refer below for details relating to sample integrity upon receipt.

- Sample counts by matrix Date documentation received Samples received without headspace Sample container provider Samples received in correct containers Sample cooling method Complete documentation received
- 5 Soils 7/4/14@10:57am Yes SGS Yes Ice Bricks Yes

Type of documentation received Samples received in good order Sample temperature upon receipt Turnaround time requested Sufficient sample for analysis Samples clearly labelled COC Yes 3.9°C Standard Yes Yes

Samples will be held for one month for water samples and two months for soil samples from date of report, unless otherwise instructed.

COMMENTS -

To the extent not inconsistent with the other provisions of this document and unless specifically agreed otherwise in writing by SGS, all SGS services are rendered in accordance with the applicable SGS General Conditions of Service accessible at

http://www.sgs.com/en/Terms-and-Conditions/General-Conditions-of-Services-English.aspx as at the date of this document.

Attention is drawn to the limitations of liability and to the clauses of indemnification.

f +61 2 8594 0499

CLIENT DETAILS

Client Geotechnique

Project 13138-1 - Canterbury - Add

CONTINUED OVERLEAF

The above table represents SGS Environmental Services' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details.

Testing as per this table shall commence immediately unless the client intervenes with a correction.

SE126027D

CLIENT DETAILS

Client Geotechnique

- SUMMARY OF ANALYSIS

Project 13138-1 - Canterbury - Add

No.	Sample ID	Exchangeable Cations and Cation Exchange Capacity	Moisture Content	pH in soil (1:5)	TOC in Soil	Total Recoverable Metals in Soil by ICPOES from
028	BH16 2.1-2.4	-	1	-	-	1
029	BH16 3.1-3.4	-	1	-	-	1
034	BH19 0-0.15	13	1	1	1	-
037	BH21 0.8-1.1	-	1	-	-	1

The above table represents SGS Environmental Services' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details.

Testing as per this table shall commence immediately unless the client intervenes with a correction.

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 enquiries@envirolabservices.com.au www.envirolabservices.com.au

CERTIFICATE OF ANALYSIS

106889

Client: Geotechnique Pty Ltd PO Box 880 Penrith NSW 2751

Attention: John Xu

Sample log in details:

Your Reference:	13138/1, Canterbury		
No. of samples:	7 Soils		
Date samples received / completed instructions received	19/03/2014	/	21/3/2014

Analysis Details:

Please refer to the following pages for results, methodology summary and quality control data. Samples were analysed as received from the client. Results relate specifically to the samples as received. Results are reported on a dry weight basis for solids and on an as received basis for other matrices. *Please refer to the last page of this report for any comments relating to the results.*

Report Details:

 Date results requested by: / Issue Date:
 28/03/14
 / 27/03/14

 Date of Preliminary Report:
 n

 NATA accreditation number 2901. This document shall not be reproduced except in full.

 Accredited for compliance with ISO/IEC 17025.

Tests not covered by NATA are denoted with *.

Results Approved By:

Jacinta Hurst

Laboratory Manager

13138/1 Cantorh Client Reference:

13138/1, C	anterbury
------------	-----------

vTRH(C6-C10)/BTEXN in Soil		400000.0
Our Reference:	UNITS	106889-2
Your Reference		Z2
Composite Reference		
Date Sampled		18/03/2014
Type of sample		Soil
Date extracted	-	24/03/2014
Date analysed	-	26/03/2014
TRHC6 - C9	mg/kg	<25
TRHC6 - C10	mg/kg	<25
vTPHC6 - C10 less BTEX (F1)	mg/kg	<25
Benzene	mg/kg	<0.2
Toluene	mg/kg	<0.5
Ethylbenzene	mg/kg	<1
m+p-xylene	mg/kg	<2
o-Xylene	mg/kg	<1
naphthalene	mg/kg	<1
Surrogate aaa-Trifluorotoluene	%	99

svTRH (C10-C40) in Soil		
Our Reference:	UNITS	106889-2
Your Reference		Z2
Composite Reference		
Date Sampled		18/03/2014
Type of sample		Soil
Date extracted	-	24/03/2014
Date analysed	-	25/03/2014
TRHC 10 - C 14	mg/kg	<50
TRHC 15 - C28	mg/kg	<100
TRHC29 - C36	mg/kg	<100
TRH>C10-C16	mg/kg	<50
TRH>C10 - C16 less Naphthalene (F2)	mg/kg	<50
TRH>C16-C34	mg/kg	<100
TRH>C34-C40	mg/kg	<100
Surrogate o-Terphenyl	%	93

PAHs in Soil		
Our Reference:	UNITS	106889-2
Your Reference		Z2
Composite Reference		
Date Sampled		18/03/2014
Type of sample		Soil
Date extracted	-	24/03/2014
Date analysed	-	26/03/2014
Naphthalene	mg/kg	<0.1
Acenaphthylene	mg/kg	<0.1
Acenaphthene	mg/kg	<0.1
Fluorene	mg/kg	<0.1
Phenanthrene	mg/kg	0.6
Anthracene	mg/kg	0.2
Fluoranthene	mg/kg	1.8
Pyrene	mg/kg	1.8
Benzo(a)anthracene	mg/kg	0.9
Chrysene	mg/kg	1.0
Benzo(b+k)fluoranthene	mg/kg	1.9
Benzo(a)pyrene	mg/kg	1.0
Indeno(1,2,3-c,d)pyrene	mg/kg	0.7
Dibenzo(a,h)anthracene	mg/kg	0.1
Benzo(g,h,i)perylene	mg/kg	0.7
Benzo(a)pyrene TEQ NEPM B1	mg/kg	2.0
Total +ve PAH's	mg/kg	11
Surrogate p-Terphenyl-d14	%	96

Organochlorine Pesticides in soil		
Our Reference:	UNITS	106889-8
Your Reference		S101
Composite Reference		1+2+3
Date Sampled		18/03/2014
Type of sample		Soil
Date extracted	-	24/03/2014
Date analysed	-	25/03/2014
HCB	mg/kg	<0.1
alpha-BHC	mg/kg	<0.1
gamma-BHC	mg/kg	<0.1
beta-BHC	mg/kg	<0.1
Heptachlor	mg/kg	<0.1
delta-BHC	mg/kg	<0.1
Aldrin	mg/kg	<0.1
Heptachlor Epoxide	mg/kg	<0.1
gamma-Chlordane	mg/kg	<0.1
alpha-chlordane	mg/kg	<0.1
Endosulfanl	mg/kg	<0.1
pp-DDE	mg/kg	<0.1
Dieldrin	mg/kg	<0.1
Endrin	mg/kg	<0.1
pp-DDD	mg/kg	<0.1
Endosulfan II	mg/kg	<0.1
pp-DDT	mg/kg	<0.1
Endrin Aldehyde	mg/kg	<0.1
Endosulfan Sulphate	mg/kg	<0.1
Methoxychlor	mg/kg	<0.1
Surrogate TCMX	%	97

Organophosphorus Pesticides		
Our Reference:	UNITS	106889-8
Your Reference		S101
Composite Reference		1+2+3
Date Sampled		18/03/2014
Type of sample		Soil
Date extracted	-	24/03/2014
Date analysed	-	25/03/2014
Diazinon	mg/kg	<0.1
Dimethoate	mg/kg	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1
Ronnel	mg/kg	<0.1
Chlorpyriphos	mg/kg	<0.1
Fenitrothion	mg/kg	<0.1
Bromophos-ethyl	mg/kg	<0.1
Ethion	mg/kg	<0.1
Surrogate TCMX	%	97

PCBs in Soil		
Our Reference:	UNITS	106889-8
Your Reference		S101
Composite Reference		1+2+3
Date Sampled		18/03/2014
Type of sample		Soil
Date extracted	-	24/03/2014
Date analysed	-	25/03/2014
Arochlor 1016	mg/kg	<0.1
Arochlor 1221	mg/kg	<0.1
Arochlor 1232	mg/kg	<0.1
Arochlor 1242	mg/kg	<0.1
Arochlor 1248	mg/kg	<0.1
Arochlor 1254	mg/kg	<0.1
Arochlor 1260	mg/kg	<0.1
Surrogate TCLMX	%	97

Client Reference: 13138/1, Canterbury

Total Phenolics in Soil		
Our Reference:	UNITS	106889-8
Your Reference		S101
Composite Reference		1+2+3
Date Sampled		18/03/2014
Type of sample		Soil
Date extracted	-	25/03/2014
Date analysed	-	25/03/2014
Total Phenolics (as Phenol)	mg/kg	<5

Acid Extractable metals in soil		
Our Reference:	UNITS	106889-8
Your Reference		S101
Composite Reference		1+2+3
Date Sampled Type of sample		18/03/2014 Soil
Date digested	-	24/03/2014
Date analysed	-	24/03/2014
Arsenic	mg/kg	<4
Cadmium	mg/kg	<0.4
Chromium	mg/kg	32
Copper	mg/kg	15
Lead	mg/kg	13
Mercury	mg/kg	<0.1
Nickel	mg/kg	31
Zinc	mg/kg	53

Client Reference: 13138/1, Canterbury

Miscellaneous Inorg - soil		
Our Reference:	UNITS	106889-8
Your Reference		S101
Composite Reference		1+2+3
Date Sampled		18/03/2014
Type of sample		Soil
Date prepared	-	25/03/2014
Date analysed	-	25/03/2014
Total Cyanide	mg/kg	<0.5

Moisture			
Our Reference:	UNITS	106889-2	106889-8
Your Reference		Z2	S101
Composite Reference			1+2+3
Date Sampled		18/03/2014	18/03/2014
Type of sample		Soil	Soil
Date prepared	-	24/03/2014	24/03/2014
Date analysed	-	25/03/2014	25/03/2014
Moisture	%	17	18

Client Reference: 13138/1, Canterbury

Method ID	Methodology Summary
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-014	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-012 subset	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013.
Org-005	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.
Org-008	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.
Org-006	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.
Inorg-030	Total Phenolics - determined colorimetrically following distillation, based upon APHA 22nd ED 5530 D.
Metals-020 ICP- AES	Determination of various metals by ICP-AES.
Metals-021 CV- AAS	Determination of Mercury by Cold Vapour AAS.
Inorg-013	Cyanide - total determined colourimetrically after distillation, based on APHA 22nd ED, 4500-CN_C,E. Free cyanide determined colourimetrically after filtration and confirmed by diffusion. Solids are extracted in a caustic media prior to distillation and analysis.
Inorg-008	Moisture content determined by heating at 105+/-5 deg C for a minimum of 12 hours.

Client Reference: 13138/1, Canterbury								
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
vTRH(C6-C10)/BTEXN in Soil						Base II Duplicate II % RPD		
Date extracted	-			24/03/2 014	[NT]	[NT]	LCS-8	24/03/2014
Date analysed	-			26/03/2 014	[NT]	[NT]	LCS-8	26/03/2014
TRHC6 - C9	mg/kg	25	Org-016	<25	[NT]	[NT]	LCS-8	137%
TRHC6 - C10	mg/kg	25	Org-016	<25	[NT]	[NT]	LCS-8	137%
Benzene	mg/kg	0.2	Org-016	<0.2	[NT]	[NT]	LCS-8	140%
Toluene	mg/kg	0.5	Org-016	<0.5	[NT]	[NT]	LCS-8	136%
Ethylbenzene	mg/kg	1	Org-016	<1	[NT]	[NT]	LCS-8	137%
m+p-xylene	mg/kg	2	Org-016	<2	[NT]	[NT]	LCS-8	136%
o-Xylene	mg/kg	1	Org-016	<1	[NT]	[NT]	LCS-8	137%
naphthalene	mg/kg	1	Org-014	<1	[NT]	[NT]	[NR]	[NR]
<i>Surrogate</i> aaa- Trifluorotoluene	%		Org-016	98	[NT]	[NT]	LCS-8	124%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate	Duplicate results	Spike Sm#	Spike %
svTRH (C10-C40) in Soil					Sm#	Base II Duplicate II % RPD		Recovery
Date extracted	-			24/03/2	[NT]	[NT]	LCS-8	24/03/2014
Date analysed	-			014 25/03/2	[NT]	[NT]	LCS-8	25/03/2014
	ma/ka	50	Org-003	~50	INITI	INITI	105-8	107%
	mg/kg	100	Org-003	<100			1.05-8	111%
	mg/kg	100	Org-003	<100			1.05-8	129%
	mg/kg	50	Org-003	<50				12376
	mg/kg	100	Org 003	<00				1110/
	mg/kg	100	Org 003	<100				120%
	0/	100	Org-003	03				83%
		POI		Blank	Duplicato		Spike Sm#	Spiko %
PAHs in Soil				Didi ik	Sm#	Base II Duplicate II % RPD		Recovery
Date extracted				24/03/2	INITI	INITI	109-3	24/03/2014
Date englycod				014				25/02/2014
Date analysed	_			014			100-0	20/03/2014
Naphthalene	mg/kg	0.1	Org-012 subset	<0.1	נאז	[N1]	LCS-3	97%
Acenaphthylene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	[NR]	[NR]
Acenaphthene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	[NR]	[NR]
Fluorene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	LCS-3	102%
Phenanthrene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	LCS-3	100%
Anthracene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	[NR]	[NR]
Fluoranthene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	LCS-3	95%

QUALITY CONTROL UNITS PQL METHOD Blank Duplicate source Duplicate results Spike Sm# Spike Sm# PAHs in Soil Spike Sm# Spike	% ery
PAHs in Soil Sm# Recov	ery
Pyrene mg/kg 0.1 Org-012 <0.1 [NT] [NT] LCS-3 10	0%
Benzo(a)anthracene mg/kg 0.1 Org-012 <0.1 [NT] [NT] [NR] [N	IR]
Chrysene mg/kg 0.1 Org-012 <0.1 [NT] [NT] LCS-3 95	5%
Benzo(b+k)fluoranthene mg/kg 0.2 Org-012 <0.2 [NT] [NT] [NR] [N	IR]
Benzo(a)pyrene mg/kg 0.05 Org-012 <0.05 [NT] [NT] LCS-3 10	5%
Indeno(1,2,3-c,d)pyrene mg/kg 0.1 Org-012 <0.1 [NT] [NT] [NR] [N	IR]
Dibenzo(a,h)anthracene mg/kg 0.1 Org-012 <0.1 [NT] [NT] [NR] [N	IR]
Benzo(g,h,i)perylenemg/kg0.1Org-012<0.1[NT][NT][NR][Nsubset	IR]
Surrogate p-Terphenyl- d14%Org-012 subset90[NT][NT]LCS-394	4%
QUALITY CONTROL UNITS PQL METHOD Blank Duplicate Duplicate results Spike Sm# S	%
Organochlorine Pesticides in soil	ery
Date extracted - 24/03/2 [NT] [NT] LCS-8 24/03/2	8/2014
Date analysed - 014 Interview LCS-8 25/03/2	8/2014
HCB ma/ka 0.1 Ora-005 <0.1 [NT] [NT] [NT] [NR] [N	IRI
alpha-BHC mg/kg 0.1 Org-005 <0.1 [NT] [NT] LCS-8 85	9%
gamma-BHC mg/kg 0.1 Org-005 <0.1 [NT] [NT] [NR] [N	IR]
beta-BHC mg/kg 0.1 Org-005 <0.1 [NT] [NT] LCS-8 68	- 3%
Heptachlor mg/kg 0.1 Org-005 <0.1 [NT] [NT] LCS-8 94	1%
delta-BHC mg/kg 0.1 Org-005 <0.1 [NT] [NT] [NR] [N	IR]
Aldrin mg/kg 0.1 Org-005 <0.1 [NT] [NT] LCS-8 98	- 3%
Heptachlor Epoxide mg/kg 0.1 Org-005 <0.1 [NT] [NT] LCS-8 12	0%
gamma-Chlordane mg/kg 0.1 Org-005 <0.1 [NT] [NT] [NR] [N	IR]
alpha-chlordane mg/kg 0.1 Org-005 <0.1 [NT] [NT] [NR] [N	IR]
Endosulfan I mg/kg 0.1 Org-005 <0.1 [NT] [NT] [NR] [N	IR]
pp-DDE mg/kg 0.1 Org-005 <0.1 [NT] [NT] LCS-8 95	5%
Dieldrin mg/kg 0.1 Org-005 <0.1 [NT] [NT] LCS-8 9'	1%
Endrin mg/kg 0.1 Org-005 <0.1 [NT] [NT] LCS-8 97	7%
pp-DDD mg/kg 0.1 Org-005 <0.1 [NT] [NT] LCS-8 10	5%
Endosulfan II mg/kg 0.1 Org-005 <0.1 [NT] [NT] [NR] [N	IR]
pp-DDT mg/kg 0.1 Org-005 <0.1 [NT] [NT] [NR] [N	IR]
Endrin Aldehyde mg/kg 0.1 Org-005 <0.1 [NT] [NT] [NT] [NR] [N	IR]
Endosulfan Sulphate mg/kg 0.1 Org-005 <0.1 [NT] [NT] LCS-8 92	2%
Methoxychlor mg/kg 0.1 Org-005 <0.1 [NT] [NR] [N	IR]
Surrogate TCMX % Org-005 95 [NT] [NT] LCS-8 95	5%

QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Organophosphorus Pesticides						Base II Duplicate II % RPD		
Date extracted	-			24/03/2 014	[NT]	[NT]	LCS-8	24/03/2014
Date analysed	-			25/03/2 014	[NT]	[NT]	LCS-8	25/03/2014
Diazinon	mg/kg	0.1	Org-008	<0.1	[NT]	[NT]	[NR]	[NR]
Dimethoate	mg/kg	0.1	Org-008	<0.1	[NT]	[NT]	[NR]	[NR]
Chlorpyriphos-methyl	mg/kg	0.1	Org-008	<0.1	[NT]	[NT]	[NR]	[NR]
Ronnel	mg/kg	0.1	Org-008	<0.1	[NT]	[NT]	[NR]	[NR]
Chlorpyriphos	mg/kg	0.1	Org-008	<0.1	[NT]	[NT]	LCS-8	101%
Fenitrothion	mg/kg	0.1	Org-008	<0.1	[NT]	[NT]	LCS-8	80%
Bromophos-ethyl	mg/kg	0.1	Org-008	<0.1	[NT]	[NT]	[NR]	[NR]
Ethion	mg/kg	0.1	Org-008	<0.1	[NT]	[NT]	LCS-8	71%
Surrogate TCMX	%		Org-008	95	[NT]	[NT]	LCS-8	95%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
PCBs in Soil					-	Base II Duplicate II % RPD		
Date extracted	-			24/03/2 014	[NT]	[NT]	LCS-8	24/03/2014
Date analysed	-			25/03/2 014	[NT]	[NT]	LCS-8	25/03/2014
Arochlor 1016	mg/kg	0.1	Org-006	<0.1	[NT]	[NT]	[NR]	[NR]
Arochlor 1221	mg/kg	0.1	Org-006	<0.1	[NT]	[NT]	[NR]	[NR]
Arochlor 1232	mg/kg	0.1	Org-006	<0.1	[NT]	[NT]	[NR]	[NR]
Arochlor 1242	mg/kg	0.1	Org-006	<0.1	[NT]	[NT]	[NR]	[NR]
Arochlor 1248	mg/kg	0.1	Org-006	<0.1	[NT]	[NT]	[NR]	[NR]
Arochlor 1254	mg/kg	0.1	Org-006	<0.1	[NT]	[NT]	LCS-8	96%
Arochlor 1260	mg/kg	0.1	Org-006	<0.1	[NT]	[NT]	[NR]	[NR]
Surrogate TCLMX	%		Org-006	95	[NT]	[NT]	LCS-8	91%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Total Phenolics in Soil						Base II Duplicate II % RPD		
Date extracted	-			25/03/2 014	[NT]	[NT]	LCS-1	25/03/2014
Date analysed	-			25/03/2 014	[NT]	[NT]	LCS-1	25/03/2014
Total Phenolics (as Phenol)	mg/kg	5	Inorg-030	45	[NT]	[NT]	LCS-1	87%
QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Acid Extractable metals in soil						Base II Duplicate II %RPD		
Date digested	-			24/03/2	[NT]	[NT]	LCS-5	24/03/2014
Date analysed	-			014 24/03/2	[NT]	[NT]	LCS-5	24/03/2014
Arsenic	mg/kg	4	Metals-020	014 <4	[NT]	[NT]	LCS-5	104%
Codmium	malka	0.4	ICP-AES	-0.1				110%
Caomium	тпд/кд	0.4	ICP-AES	<0.4	נואון	[ייאן]	103-5	110%

Client Reference: 13138/1, Canterbury								
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Acid Extractable metals in soil						Base II Duplicate II % RPD		
Chromium	mg/kg	1	Metals-020 ICP-AES	<1	[NT]	[NT]	LCS-5	108%
Copper	mg/kg	1	Metals-020 ICP-AES	<1	[NT]	[NT]	LCS-5	108%
Lead	mg/kg	1	Metals-020 ICP-AES	<1	[NT]	[NT]	LCS-5	105%
Mercury	mg/kg	0.1	Metals-021 CV-AAS	<0.1	[NT]	[NT]	LCS-5	94%
Nickel	mg/kg	1	Metals-020 ICP-AES	<1	[NT]	[NT]	LCS-5	108%
Zinc	mg/kg	1	Metals-020 ICP-AES	<1	[NT]	[NT]	LCS-5	109%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate	Duplicate results	Spike Sm#	Spike % Recovery
Miscellaneous Inorg - soil						Base II Duplicate II %RPD		Recovery
Date prepared	-			25/03/2 014	[NT]	[NT]	LCS-1	25/03/2014
Date analysed	-			25/03/2 014	[NT]	[NT]	LCS-1	25/03/2014
Total Cyanide	mg/kg	0.5	Inorg-013	<0.5	[NT]	[NT]	LCS-1	89%
QUALITY CONTROL Moisture	UNITS	PQL	METHOD	Blank				
Date prepared	-			[NT]	1			
Date analysed	-			[NT]				
Moisture	%	0.1	Inorg-008	[NT]				

Report Comments:

Asbestos ID was analysed by Approved Identifier: Asbestos ID was authorised by Approved Signatory: Not applicable for this job Not applicable for this job

INS: Insufficient sample for this test	PQL: Practical Quantitation Limit	NT: Not tested
NA: Test not required	RPD: Relative Percent Difference	NA: Test not required
<: Less than	>: Greater than	LCS: Laboratory Control Sample

Quality Control Definitions

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples. **Duplicate**: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

Matrix Spike : A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist. **LCS (Laboratory Control Sample)** : This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

Surrogate Spike: Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is

generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable. Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics and 10-140% for SVOC and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

cuc 21/3 10am.

GEOTECHNIQUE PTY I TD

Laboratory Test Request / Chain of Custody Record

		DENI	P O	Box 880	Fax: (02) 4722	6161								
AB SERVICES I Y STREET DOD NSW 2067	PTY LD	FEN	FAX-	02 9910 63	201	Sampling B	iy:	LY		Job No: Project:	13138/1	1	of	2
E			I AA.	02 3310 02		Project Mar	lager:	JX		Location: C	anterbury			
Sampling det	ails		Samp	le type			1.1.1.1	-						
Depth (m)	Date	Time	Soil	Water	Re	sults requi	ired by:	27th N	March - St	andard T	urnarour	nd Time		
					Metals As, Cd, Cr, Cu, Pb, Hg, Ni and Zn	TPH* & BTEX	РАН							KEEP SAMPL
-	18/03/2014	-	SG						~	Envirola	heart	1		YES
-	18/03/2014		SG			~			1. 200 2	12	Ashley St			YES
	18/03/2014		SG							Phylon	W 2067			YES
-	18/03/2014	-	SG			1			1. 24204	126000	9910 6200			YES
-	18/03/2014	-	SG			1.0.0				1-0004	1		1	YES
-	18/03/2014	-	SG							19/3	14			YES
-	18/03/2014		SG				1			16:3	0			YES
			-			_			6	IT				
								-	C.a.t	linbient				
-									1 - 24 BBC	Cepack	1			
			-						C	Broken/Nor	ne			
1	Rel	linguished h		I										
	i vei	Signature	<u>y</u>	T	Date	-	Mamo		1	Received by	1			
J	1	ix			21/03/2014	To	INAILIC		A.	Signature		AL 11	Date	
	IB SERVICES I Y STREET OD NSW 2067 200 E Sampling det Depth (m) - - - - - - - -	IB SERVICES PTY LD Y STREET YOD NSW 2067 200 E Sampling details Depth (m) Date - 18/03/2014 - 18/03/2014 - 18/03/2014 - 18/03/2014 - 18/03/2014 - 18/03/2014 - 18/03/2014 - 18/03/2014 - 18/03/2014 - 18/03/2014 - 18/03/2014 - 18/03/2014 - 18/03/2014	PENF VB SERVICES PTY LD Y STREET VOD NSW 2067 200 E Sampling details Depth (m) Date Time - 18/03/2014 - - 18/03/2014	PENRITH NS NB SERVICES PTY LD Y STREET Y STREET YOD NSW 2067 FAX: E Sampling details Samp Depth (m) Date Time Soil - 18/03/2014 - SG - - - - - - - - - - - - - - - - - -	PENRITH NSW 2751 NOD NSW 2067 OD NSW 2067 FAX: 02 9910 62 E Sampling details Sample type Depth (m) Date Time Soil Water - 18/03/2014 - SG - - 18/03/2014 - - - -	PENRITH NSW 2751 IB SERVICES PTY LD Y STREET DOD NSW 2067 200 FAX: 02 9910 6201 E Sampling details Sample type Depth (m) Date Time Soil Water Metals As, Cd, Cr, Cu, Pb, Hg, Ni and Zn - 18/03/2014 - SG - 18/03/2014 - SG	PENRITH NSW 2751 Sampling E VB SERVICES PTY LD Y STREET)OD NSW 2067 FAX: 02 9910 6201 Project Mar 200 FAX: 02 9910 6201 Project Mar E Sampling details Sample type Results require Depth (m) Date Time Soil Water - 18/03/2014 - SG TPH* As, Cd, Cr, Cu, Pb, Hg, Ni and Zn BTEX - 18/03/2014 - SG ✓ - 18/03/2014 - SG ✓ - 18/03/2014 - SG ✓ - 18/03/2014 - SG - 18/03/2014 - SG - 18/03/2014 - SG - 18/03/2014 - SG - 18/03/2014 - SG - 18/03/2014 SG	PENRITH NSW 2751 Sampling By: Sampling details Sample type Results required by: Depth (m) Date Time Soil Water Metals TPH* PAH - 18/03/2014 - SG ✓ ✓ - 18/03/2014 - SG ✓ ✓ - 18/03/2014 - SG ✓ ✓ - 18/03/2014 - SG ✓ ✓ - 18/03/2014 - SG ✓ ✓ ✓ ✓ - 18/03/2014 - SG <t< td=""><td>PENRITH NSW 2751 Sampling By: LY Sampling By: LY Project Manager: JX E Sampling details Sample type Results required by: 27th N Depth (m) Date Time Soil Water Metals TPH* PAH PAH - 18/03/2014 - SG -</td></t<> <td>PENRITH NSW 2751 Sampling By: LY 200 FAX: 02 9910 6201 Project Manager: JX E Sampling details Sample type Results required by: 27th March - S1 Depth (m) Date Time Soil Water Water PHH - 18/03/2014 - SG V V A - 18/03/2014 - SG I I I I - 18/03/2014 - SG I I I I I I I I I I I I I I I I <td< td=""><td>PENRITH NSW 2751 Sampling By: LY Job No: YSTREET Project: Project: Project: Project: Project: Dob No: Project: Project: Dob No: Project: Dob No: Project: Project: Dob No: Project: Project:</td><td>PENRITH NSW 2751 Page IB SERVICES PTY LD YSTREET NOD NSW 2067 Sampling By: LY Job No: 13138/1 200 FAX: 02 9910 6201 Project: Project: Project: 200 FAX: 02 9910 6201 Project Manager: JX Location: Canterbury E Sampling details Sample type Results required by: 27th March - Standard Turnarour Image: Im</td><td>PENRITH NSW 2751 Page 1 VSTREET JOD NSW 2067 Sampling By: LY Job No: 13138/1 VSTREET JOD NSW 2067 FAX: 02 9910 6201 Project Manager: JX Location: Canterbury. E Sampling details Sample type Results required by: 27th March - Standard Turnaround Time Depth (m) Date Time Soil Water Phi, Hg, Ni and Zn - 18/03/2014 - SG Image: Control of the contro</td><td>PENRITH NSW 2751 Page 1 of VSTREET DOD NSW 2067 Sampling By: LY Job No: 13138/1 ''' Project: Project: Project: Project: '''' Sampling By: JX Location: Canterbury E Sampling details Sample type Results required by: 27th March - Standard Turnaround Time Depth (m) Date Time Soil Water Ph, Hg, Ni and Zn BTEX - 18/03/2014 - SG V V Page 1 of - 18/03/2014 - SG V V Page 1 of - 18/03/2014 - SG V V Page 1 of - 18/03/2014 - SG V V Page 1 of - 18/03/2014 - SG V V Page 1 of - 18/03/2014 - SG V V Page 1 Page 1</td></td<></td>	PENRITH NSW 2751 Sampling By: LY Sampling By: LY Project Manager: JX E Sampling details Sample type Results required by: 27th N Depth (m) Date Time Soil Water Metals TPH* PAH PAH - 18/03/2014 - SG -	PENRITH NSW 2751 Sampling By: LY 200 FAX: 02 9910 6201 Project Manager: JX E Sampling details Sample type Results required by: 27th March - S1 Depth (m) Date Time Soil Water Water PHH - 18/03/2014 - SG V V A - 18/03/2014 - SG I I I I - 18/03/2014 - SG I I I I I I I I I I I I I I I I <td< td=""><td>PENRITH NSW 2751 Sampling By: LY Job No: YSTREET Project: Project: Project: Project: Project: Dob No: Project: Project: Dob No: Project: Dob No: Project: Project: Dob No: Project: Project:</td><td>PENRITH NSW 2751 Page IB SERVICES PTY LD YSTREET NOD NSW 2067 Sampling By: LY Job No: 13138/1 200 FAX: 02 9910 6201 Project: Project: Project: 200 FAX: 02 9910 6201 Project Manager: JX Location: Canterbury E Sampling details Sample type Results required by: 27th March - Standard Turnarour Image: Im</td><td>PENRITH NSW 2751 Page 1 VSTREET JOD NSW 2067 Sampling By: LY Job No: 13138/1 VSTREET JOD NSW 2067 FAX: 02 9910 6201 Project Manager: JX Location: Canterbury. E Sampling details Sample type Results required by: 27th March - Standard Turnaround Time Depth (m) Date Time Soil Water Phi, Hg, Ni and Zn - 18/03/2014 - SG Image: Control of the contro</td><td>PENRITH NSW 2751 Page 1 of VSTREET DOD NSW 2067 Sampling By: LY Job No: 13138/1 ''' Project: Project: Project: Project: '''' Sampling By: JX Location: Canterbury E Sampling details Sample type Results required by: 27th March - Standard Turnaround Time Depth (m) Date Time Soil Water Ph, Hg, Ni and Zn BTEX - 18/03/2014 - SG V V Page 1 of - 18/03/2014 - SG V V Page 1 of - 18/03/2014 - SG V V Page 1 of - 18/03/2014 - SG V V Page 1 of - 18/03/2014 - SG V V Page 1 of - 18/03/2014 - SG V V Page 1 Page 1</td></td<>	PENRITH NSW 2751 Sampling By: LY Job No: YSTREET Project: Project: Project: Project: Project: Dob No: Project: Project: Dob No: Project: Dob No: Project: Project: Dob No: Project: Project:	PENRITH NSW 2751 Page IB SERVICES PTY LD YSTREET NOD NSW 2067 Sampling By: LY Job No: 13138/1 200 FAX: 02 9910 6201 Project: Project: Project: 200 FAX: 02 9910 6201 Project Manager: JX Location: Canterbury E Sampling details Sample type Results required by: 27th March - Standard Turnarour Image: Im	PENRITH NSW 2751 Page 1 VSTREET JOD NSW 2067 Sampling By: LY Job No: 13138/1 VSTREET JOD NSW 2067 FAX: 02 9910 6201 Project Manager: JX Location: Canterbury. E Sampling details Sample type Results required by: 27th March - Standard Turnaround Time Depth (m) Date Time Soil Water Phi, Hg, Ni and Zn - 18/03/2014 - SG Image: Control of the contro	PENRITH NSW 2751 Page 1 of VSTREET DOD NSW 2067 Sampling By: LY Job No: 13138/1 ''' Project: Project: Project: Project: '''' Sampling By: JX Location: Canterbury E Sampling details Sample type Results required by: 27th March - Standard Turnaround Time Depth (m) Date Time Soil Water Ph, Hg, Ni and Zn BTEX - 18/03/2014 - SG V V Page 1 of - 18/03/2014 - SG V V Page 1 of - 18/03/2014 - SG V V Page 1 of - 18/03/2014 - SG V V Page 1 of - 18/03/2014 - SG V V Page 1 of - 18/03/2014 - SG V V Page 1 Page 1

ENVIROLAB SERVICES PTY LTD

Sampling Date: Sampled by: 18/3/2014 LY Project Manager: JX

Job No: 13138/1

Location: Canterbury

Results Required by: 27th March 2014 - Standard TAT

Page 2 of 2

Composite Sample	Sub-Samples	Analyte								
		Heavy Metals [*]	OCP	OPP	РСВ	Total Phenols	Total Cyanides			
S101	Z1 + Z2 + Z3		>	*	>	~				

*: Heavy Metals include As, Cd, Cr, Cu, Pb, Hg, Ni and Zn
 Y: Test required
 OCP: Organochlorine Pesticides
 OPP: Organophosphorus Pesticides
 PCB: Polychlorinated Biphenyls

106889

GEOTECHNIQUE PTY LTD (JOHN XU) 21/3/2014

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 enquiries@envirolabservices.com.au www.envirolabservices.com.au

SAMPLE RECEIPT ADVICE

Client: Geotechnique Pty Ltd PO Box 880 Penrith NSW 2751

ph: 02 4722 2700 Fax: 02 4722 6161

Attention: John Xu

Sample log in details:	
Your reference:	13138/1, Canterbury
Envirolab Reference:	106889
Date received:	19/03/2014
Date results expected to be reported:	28/03/14

Samples received in appropriate condition for analysis:	YES
No. of samples provided	7 Soils
Turnaround time requested:	Standard
Temperature on receipt (°C)	10.1
Cooling Method:	Ice Pack
Sampling Date Provided:	YES

Comments:

Samples will be held for 1 month for water samples and 2 months for soil samples from date of receipt of samples.

Contact details: Please direct any queries to Aileen Hie or Jacinta Hurst ph: 02 9910 6200 fax: 02 9910 6201 email: ahie@envirolabservices.com.au or jhurst@envirolabservices.com.au

Page 1 of 1

APPENDIX I

ENVIRONMENTAL NOTES

IMPORTANT INFORMATION REGARDING YOUR ENVIRONMENTAL SITE ASSESSMENT

These notes have been prepared by Geotechnique Pty Ltd, using guidelines prepared by the ASFE (Associated Soil and Foundation Engineers). The notes are offered to assist in the interpretation of your environmental site assessment report.

REASONS FOR AN ENVIRONMENTAL ASSESSMENT

Environmental site assessments are typically, though not exclusively, performed in the following circumstances:

- As a pre-acquisition assessment on behalf of a purchaser or a vendor, when a property is to be sold
- As a pre-development assessment, when a property or area of land is to be redeveloped, or the land use has changed, e.g. from a factory to a residential subdivision
- As a pre-development assessment of greenfield sites, to establish baseline conditions and assess environmental, geological and hydrological constraints to the development of e.g. a landfill
- As an audit of the environmental effects of previous and present site usage

Each circumstance requires a specific approach to assessment of soil and groundwater contamination. In all cases the objective is to identify and if possible quantify the risks that unrecognised contamination poses to the ongoing proposed activity. Such risks may be financial (clean-up costs or limitations in site use) and physical (health risks to site users or the public).

ENVIRONMENTAL SITE ASSESSMENT LIMITATIONS

Although information provided by an environmental site assessment can reduce exposure to the risk of the presence of contamination, no environmental site assessment can eliminate the risk. Even a rigorous professional assessment might not detect all contamination within a site. Contaminants could be present in areas that were not surveyed or sampled, or migrate to areas that did not show signs of contamination when sampled. Contaminant analysis cannot possibly cover every type of contaminant that may occur; only the most likely contaminants are screened.

AN ENVIRONMENTAL SITE ASSESSMENT REPORT IS BASED ON A UNIQUE SET OF PROJECT SPECIFIC FACTORS

In the following events and in order to avoid cost problems, you should ask your consultant to assess any changes in the conclusion and recommendations made in the assessment:

- When the nature of the proposed development is changed e.g. if a residential development is proposed, rather than a commercial development
- When the size or configuration of the proposed development is altered e.g. if a basement is added
- When the location or orientation of the proposed structure is modified
- When there is a change of land ownership, or
- For application to an adjacent site

ENVIRONMENTAL SITE ASSESSMENT FINDINGS ARE PROFESSIONAL ESTIMATES

Site assessment identifies actual sub-surface conditions only at those points where samples are taken, when they are taken. Data obtained from the sampling and subsequent laboratory analyses are interpreted by geologists, engineers or scientists and opinions are drawn about the overall sub-surface conditions, the nature and extent of contamination, the likely impact on any proposed development and appropriate remediation measures. Actual conditions may differ from those inferred, because no professional, no matter how qualified and no sub-surface exploration program, no matter how comprehensive, can reveal what is hidden by earth, rock and time. The actual interface between materials may be far more gradual or abrupt than an assessment indicates. Actual conditions in areas not sampled may differ from predictions. Nothing can be done to prevent the unanticipated, however, steps can be taken to help minimise the impact. For this reason site owners should retain the services of their consultants throughout the development stages of the project in order to identify variances, conduct additional tests that may be necessary and to recommend solutions to problems encountered on site.

Soil and groundwater contamination is a field in which legislation and interpretation of legislation by government departments is changing rapidly. Whilst every attempt is made by Geotechnique Pty Ltd to be familiar with current policy, our interpretation of the investigation findings should not be taken to be that of the relevant authority. When approval from a statutory authority is required for a project, approval should be directly sought.

Environmental Notes continued

STABILITY OF SUB-SURFACE CONDITIONS

Sub-surface conditions can change by natural processes and site activities. As an environmental site assessment is based on conditions existing at the time of the investigation, project decisions should not be based on environmental site assessment data that may have been affected by time. The consultant should be requested to advise if additional tests are required.

ENVIRONMENTAL SITE ASSESSMENTS ARE PERFORMED FOR SPECIFIC PURPOSES AND CLIENTS

Environmental site assessments are prepared in response to a specific scope of work required to meet the specific needs of specific individuals e.g. an assessment prepared for a consulting civil engineer may not be adequate to a construction contractor or another consulting civil engineer.

An assessment should not be used by other persons for any purpose or by the client for a different purpose. No individual, other than the client, should apply an assessment, even for its intended purpose, without first conferring with the consultant. No person should apply an assessment for any purpose other than that originally contemplated, without first conferring with the consultant.

MISINTERPRETATION OF ENVIRONMENTAL SITE ASSESSMENTS

Costly problems can occur when design professionals develop plans based on misinterpretation of an environmental site assessment. In order to minimise problems, the environmental consultant should be retained to work with appropriate design professionals, to explain relevant findings and to review the adequacy of plans and specifications relative to contamination issues.

LOGS SHOULD NOT BE SEPARATED FROM THE REPORT

Borehole and test pit logs are prepared by environmental scientists, engineers or geologists, based upon interpretation of field conditions and laboratory evaluation of field samples. Logs are normally provided in our reports and these would not be redrawn for inclusion in site remediation or other design drawings, as subtle but significant drafting errors or omissions may occur in the transfer process. Photographic reproduction can eliminate this problem, however, contractors can still misinterpret the logs during bid preparation if separated from the text of the assessment. Should this occur, delays and disputes, or unanticipated costs may result.

To reduce the likelihood of borehole and test pit log misinterpretation, the complete assessment should be available to persons or organisations involved in the project, such as contractors, for their use. Denial of such access and disclaiming responsibility for the accuracy of sub-surface information does not insulate an owner from the attendant liability. It is critical that the site owner provides all available site information to persons and organisations, such as contractors.

READ RESPONSIBILITY CLAUSES CLOSELY

An environmental site assessment is based extensively on judgement and opinion; therefore, it is necessarily less exact than other disciplines. This situation has resulted in wholly unwarranted claims being lodged against consultants. In order to aid in prevention of this problem, model clauses have been developed for use in written transmittals. These are definitive clauses, designed to indicate consultant responsibility. Their use helps all parties involved recognise individual responsibilities and formulate appropriate action. Some of these definitive clauses are likely to appear in the environmental site assessment and you are encouraged to read them closely. Your consultant will be happy to give full and frank answers to any questions you may have.

EOTECHNIQUE

PTY LTD